Mar, 22

Single stream parallelization of generalized LSTM-like RNNs on a GPU

Recurrent neural networks (RNNs) have shown outstanding performance on processing sequence data. However, they suffer from long training time, which demands parallel implementations of the training procedure. Parallelization of the training algorithms for RNNs are very challenging because internal recurrent paths form dependencies between two different time frames. In this paper, we first propose a […]
Mar, 20

CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication

Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPUs, GPUs and Xeon Phi. First, the CSR5 format is insensitive to the sparsity structure of the input matrix. Thus the […]
Mar, 20

Interactive Illustrative Line Styles and Line Style Transfer Functions for Flow Visualization

We present a flexible illustrative line style model for the visualization of streamline data. Our model partitions view-oriented line strips into parallel bands whose basic visual properties can be controlled independently. We thus extend previous line stylization techniques specifically for visualization purposes by allowing the parametrization of these bands based on the local line data […]
Mar, 20

On learning optimized reaction diffusion processes for effective image restoration

For several decades, image restoration remains an active research topic in low-level computer vision and hence new approaches are constantly emerging. However, many recently proposed algorithms achieve state-of-the-art performance only at the expense of very high computation time, which clearly limits their practical relevance. In this work, we propose a simple but effective approach with […]
Mar, 20

The More We Share, The More We Have: Improving GPU performance through Register Sharing

Graphics Processing Units (GPUs) consisting of Streaming Multiprocessors (SMs) achieve high throughput by running a large number of threads and context switching among them to hide execution latencies. The amount of thread level parallelism that can be utilized depends on the number of resident threads on each of the SMs. The threads are typically structured […]
Mar, 20

Implementation of a Practical Distributed Calculation System with Browsers and JavaScript, and Application to Distributed Deep Learning

Deep learning can achieve outstanding results in various fields. However, it requires so significant computational power that graphics processing units (GPUs) and/or numerous computers are often required for the practical application. We have developed a new distributed calculation framework called "Sashimi" that allows any computer to be used as a distribution node only by accessing […]
Mar, 18

Fast Sparse Matrix Multiplication on GPU

Sparse matrix multiplication is an important algorithm in a wide variety of problems, including graph algorithms, simulations and linear solving to name a few. Yet, there are but a few works related to acceleration of sparse matrix multiplication on a GPU. We present a fast, novel algorithm for sparse matrix multiplication, outperforming the previous algorithm […]
Mar, 18

Local vs. Global Optimization: Operator Placement Strategies in Heterogeneous Environments

In several parts of query optimization, like join enumeration or physical operator selection, there is always the question of how much optimization is needed and how large the performance benefits are. In particular, a decision for either global optimization (e.g., during query optimization) or local optimization (during query execution) has to be taken. In this […]
Mar, 18

Portable GPU-Based Artificial Neural Networks for Accelerated Data-Driven Modeling

Artificial neural network (ANN) is widely applied as the data-driven modeling tool in hydroinformatics due to its broad applicability of handling implicit and nonlinear relationships between the input and output data. To obtain a reliable ANN model, training ANN using the data is essential, but the training is usually taking many hours for a large […]
Mar, 18

Accelerating Direction-Optimized Breadth First Search on Hybrid Architectures

Large scale-free graphs are famously difficult to process efficiently: the highly skewed vertex degree distribution makes it difficult to obtain balanced workload partitions for parallel processing. Our research instead aims to take advantage of vertex degree heterogeneity by partitioning the workload to match the strength of the individual computing elements in a hybrid architecture. This […]
Mar, 18

A Switched Dynamical System Framework for Analysis of Massively Parallel Asynchronous Numerical Algorithms

In the near future, massively parallel computing systems will be necessary to solve computation intensive applications. The key bottleneck in massively parallel implementation of numerical algorithms is the synchronization of data across processing elements (PEs) after each iteration, which results in significant idle time. Thus, there is a trend towards relaxing the synchronization and adopting […]
Mar, 18

Fast Radix Sort for Sparse Linear Algebra on GPU

Fast sorting is an important step in many parallel algorithms, which require data ranking, ordering or partitioning. Parallel sorting is a widely researched subject, and many algorithms were developed in the past. In this paper, the focus is on implementing highly efficient sorting routines for the sparse linear algebra operations, such as parallel sparse matrix […]
Page 3 of 79312345...102030...Last »

* * *

* * *

Like us on Facebook

HGPU group

230 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1425 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: