Stamos Katsigiannis, Georgios Papaioannou, Dimitris Maroulis
Nowadays, real-time video communication over the internet through video conferencing applications has become an invaluable tool in everyone’s professional and personal life. This trend underlines the need for video coding algorithms that provide acceptable quality on low bitrates and can support various resolutions inside the same stream in order to cope with limitations on computational […]
View View   Download Download (PDF)   
Azzam Haidar, Stanimire Tomov, Piotr Luszczek, Jack Dongarra
Embedded computing, not only in large systems like drones and hybrid vehicles, but also in small portable devices like smart phones and watches, gets more extreme to meet ever increasing demands for extended and improved functionalities. This, combined with the typical constrains for low power consumption and small sizes, makes the design of numerical libraries […]
Tomas Karnagel, Rene Mueller, Guy M. Lohman
The massive parallelism and faster random memory access of Graphics Processing Units (GPUs) promise to further accelerate complex analytics operations such as joins and grouping, but also provide additional challenges to optimizing their performance. There are more implementation alternatives to consider on the GPU, such as exploiting different types of memory on the device and […]
View View   Download Download (PDF)   
Shengren Li, Nina Amenta
We present a brute-force approach for finding k-nearest neighbors on the GPU for many queries in parallel. Our program takes advantage of recent advances in fundamental GPU computing primitives. We modify a matrix multiplication subroutine in MAGMA library [6] to calculate the squared Euclidean distances between queries and references. The nearest neighbors selection is accomplished […]
View View   Download Download (PDF)   
Ang Li, Radu Serban, Dan Negrut
We discuss an approach for solving sparse or dense banded linear systems ${bf A} {bf x} = {bf b}$ on a Graphics Processing Unit (GPU) card. The matrix ${bf A} in {mathbb{R}}^{N times N}$ is possibly nonsymmetric and moderately large; i.e., $10000 leq N leq 500000$. The ${it split and parallelize}$ (${tt SaP}$) approach seeks […]
Mujeeb B Jimoh
Insider threat is one of the risks both government and private organizations have to deal with in protecting their important information. Data exfiltration and data leakage resulting from insiders activities can be very difficult to identify and quantify. Unfortunately, existing solutions that efficiently check whether data moving across a network is known to be sensitive […]
View View   Download Download (PDF)   
Andreas Adelmann, Uldis Locans, Andreas Suter
Emerging processor architectures such as GPUs and Intel MICs provide a huge performance potential for high performance computing. However developing software using these hardware accelerators introduces additional challenges for the developer such as exposing additional parallelism, dealing with different hardware designs and using multiple development frameworks in order to use devices from different vendors. The […]
View View   Download Download (PDF)   
Shuoxin Lin
Dataflow models are valuable tools for representing, analyzing, and synthesizing embedded systems. Heterogeneous computing platforms with multi-core CPU and Graphics Processing Units (GPUs) provide a low cost platform for high performance computations. In this report, we present a dataflow based automated design framework that incorporates analysis, optimization and synthesis tools for embedded systems. Our framework […]
View View   Download Download (PDF)   
John-Alexander M. Assael
Data-efficient learning in continuous state-action spaces using high-dimensional observations remains an elusive challenge in developing fully autonomous systems. An instance of this challenge is the pixels to torques problem, which identifies key elements of an autonomous agent: autonomous thinking and decision making using sensor measurements only, learning from mistakes, and applying past experiences to novel […]
Gunther Lukat, Robi Banerjee
We present a GPU accelerated CUDA-C implementation of the Barnes Hut (BH) tree code for calculating the gravita- tional potential on octree adaptive meshes. The tree code algorithm is implemented within the FLASH4 adaptive mesh refinement (AMR) code framework and therefore fully MPI parallel. We describe the algorithm and present test results that demonstrate its […]
Jen-Cheng Huang
Architecture simulation is an important performance modeling approach. Modeling hardware components with sufficient detail helps architects to identify both hardware and software bottlenecks. However, the major issue of architectural simulation is the huge slowdown compared to native execution. The slowdown gets higher for the emerging workloads that feature high throughput and massive parallelism, such as […]
View View   Download Download (PDF)   
Hasmik Osipyan, Martin Krulis, Stephane Marchand-Maillet
The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction which is defined as a process of mapping data from high-dimensional space into low-dimensional. One of the most popular methods for handling this problem is multidimensional scaling. Due to the technological advances, the dimensionality of the input data as […]
View View   Download Download (PDF)   
Page 1 of 51612345...102030...Last »

* * *

* * *

Follow us on Twitter

HGPU group

1580 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

298 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: