12873
Nathalie Kaligirwa, Eleazar Leal, Le Gruenwald, Jianting Zhang, Simin You
Global remote sensing and large-scale environment modeling have generated vast amounts of raster geospatial images. To gain a better understanding of this data, researchers are interested in performing spatial queries over them, and the computation of those queries’ results is greatly facilitated by the existence of spatial indices. Additionally, though there have been major advances […]
View View   Download Download (PDF)   
Lutz F. Gruber, Mike West
We discuss modeling and GPU-based computation in a new class of multivariate dynamic models customized to learning and prediction with increasingly high-dimensional time series. This defines an approach to decoupling analysis into a parallel set of univariate time series dynamic models, while flexibly modeling cross-series relationships in a novel, induced class of time-varying graphical models […]
View View   Download Download (PDF)   
Weibin Sun
As the base of the software stack, system-level software is expected to provide efficient and scalable storage, communication, security and resource management functionalities. However, there are many computationally expensive functionalities at the system level, such as encryption, packet inspection, and error correction. All of these require substantial computing power. What’s more, today’s application workloads have […]
Francisco Lazaro Blasco, Chen Tang
Due to the scarcity and high cost of satellite frequency spectrum, it is very important to utilize the available spectrum as efficiently as possible. The efficient usage of the spectrum in the satellite return link is a challenging task, especially if multiple users are present. In previous works Multi-User Detection (MUD) techniques have been widely […]
View View   Download Download (PDF)   
Saad Quader
The problem of computing the Betweenness Centrality (BC) is important in analyzing graphs in many practical applications like social networks, biological networks, transportation networks, electrical circuits, etc. Since this problem is computation intensive, researchers have been developing algorithms using high performance computing resources like supercomputers, clusters, and Graphics Processing Units (GPUs). Current GPU algorithms for […]
View View   Download Download (PDF)   
Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, Tak-Wah Lam
MEGAHIT is a NGS de novo assembler for assembling large and complex metagenomics data in a time- and cost-efficient manner. It finished assembling a soil metagenomics dataset with 252Gbps in 44.1 hours and 99.6 hours on a single computing node with and without a GPU, respectively. MEGAHIT assembles the data as a whole, i.e., it […]
Chulian Zhang, Hamed Tabkhi, Gunar Schirner
Background subtraction is an essential first stage in many vision applications differentiating foreground pixels from the background scene, with Mixture of Gaussians (MoG) being a widely used implementation choice. MoG’s high computation demand renders a real-time single threaded realization infeasible. With it’s pixel level parallelism, deploying MoG on top of parallel architectures such as a […]
View View   Download Download (PDF)   
Sreeram Potluri
Accelerators (such as NVIDIA GPUs) and coprocessors (such as Intel MIC/Xeon Phi) are fueling the growth of next-generation ultra-scale systems that have high compute density and high performance per watt. However, these many-core architectures cause systems to be heterogeneous by introducing multiple levels of parallelism and varying computation/communication costs at each level. Application developers also […]
View View   Download Download (PDF)   
Fredo Durand, Saman Amarashinghe
Future graphics and imaging applications-from self-driving cards, to 4D light field cameras, to pervasive sensing-demand orders of magnitude more computation than we currently have. This thesis argues that the efficiency and performance of an application are determined not only by the algorithm and the hardware architecture on which it runs, but critically also by the […]
View View   Download Download (PDF)   
Bernd Steinbach, Matthias Werner
The Boolean domain faces us with the exponential complexity of Boolean functions and the technological progress in micro- and nano-electronics allows increasing numbers of Boolean variables. This requires very powerful Boolean computations. The progress in the performance of Graphics Processing Units (GPUs) and the possibility to utilize the GPU to solve tasks of many application […]
View View   Download Download (PDF)   
Romain Dolbeau
This paper describes & evaluates a fast, hybrid implementation of the Advanced Encryption Standard with 256 bit keys (AES-256) block encryption in Galois/Counter Mode (GCM). The implementation is bit-compatible with the implemented standard in both the OpenSSL and Crypto++ libraries, while significantly (up to three times) faster for large amount of data. In this implementation, […]
Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal
Programming models such as CUDA and OpenCL allow the programmer to specify the independence of threads, effectively removing ordering constraints. Still, parallel architectures such as the graphics processing unit (GPU) do not exploit the potential of data-locality enabled by this independence. Therefore, programmers are required to manually perform data-locality optimisations such as memory coalescing or […]
View View   Download Download (PDF)   
Page 1 of 47212345...102030...Last »

* * *

* * *

Like us on Facebook

HGPU group

152 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1252 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: