12933
James A. Ross, David A. Richie, Song J. Park, Dale R. Shires, Lori L. Pollock
An observation in supercomputing in the past decade illustrates the transition of pervasive commodity products being integrated with the world’s fastest system. Given today’s exploding popularity of mobile devices, we investigate the possibilities for high performance mobile computing. Because parallel processing on mobile devices will be the key element in developing a mobile and computationally […]
View View   Download Download (PDF)   
Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer, Andy Nisbet, Paul H. J. Kelly, Andrew J. Davison, Mikel Lujan, Michael F. P. O'Boyle, Graham Riley, Nigel Topham, Steve Furber
Real-time dense computer vision and SLAM offer great potential for a new level of scene modelling, tracking and real environmental interaction for many types of robot, but their high computational requirements mean that use on mass market embedded platforms is challenging. Meanwhile, trends in low-cost, low-power processing are towards massive parallelism and heterogeneity, making it […]
View View   Download Download (PDF)   
Elena Aragon, Juan M. Jimenez, Arian Maghazeh, Jim Rasmusson, Unmesh D. Bordoloi
Adaptations of the Aho-Corasick (AC) algorithm on high performance graphics processors (also called GPUs) have garnered increasing attention in recent years. However, no results have been reported regarding their implementations on mobile GPUs. In this paper, we show that implementing a state-of-the-art Aho-Corasick parallel algorithm on a mobile GPU delivers significant speedups. We study a […]
View View   Download Download (PDF)   
Moritz Schmid, Oliver Reiche, Christian Schmitt, Frank Hannig, Jurgen Teich
Multiresolution Analysis (MRA) is a mathematical method that is based on working on a problem at different scales. One of its applications is medical imaging where processing at multiple scales, based on the concept of Gaussian and Laplacian image pyramids, is a well-known technique. It is often applied to reduce noise while preserving image detail […]
View View   Download Download (PDF)   
Antonis S. Nikitakis
Human vision is a complex combination of physical, psychological and neurological processes that allow us to interact with our environment. We use vision effortlessly to detect, identify and track objects, to navigate and to create a conceptual map of our surroundings. The goal of computer vision is to design computer systems that are capable of […]
View View   Download Download (PDF)   
Sunil Shah
In 2012 a federal mandate was imposed that required the FAA to integrate unmanned aerial systems (UAS) into the national airspace (NAS) by 2015 for civilian and commercial use. A significant driver for the increasing popularity of these systems is the rise in open hardware and open software solutions which allow hobbyists to build small […]
Sergio Sanchez, German Leon, Antonio Plaza, Enrique S. Quintana-Orti
Remotely sensed hyperspectral imaging missions are often limited by onboard power restrictions while, simultaneously, require high computing power in order to address applications with relevant constraints in terms of processing times. In recent years, graphics processing units (GPUs) have emerged as a commodity computing platform suitable to meet real-time processing requirements in hyperspectral image processing. […]
View View   Download Download (PDF)   
Johan Gronqvist, Anton Lokhmotov
OpenCL is a relatively young industry-backed standard API that aims to provide functional portability across systems equipped with computational accelerators such as GPUs: a standard-conforming OpenCL program can be executed on any standard-conforming OpenCL implementation. OpenCL, however, does not address the issue of performance portability: transforming an OpenCL program to achieve higher performance on one […]
View View   Download Download (PDF)   
Seung Heon Kang, Seung-Jae Lee, In Kyu Park
In this paper, we parallelize and optimize the popular feature detection algorithms, i.e. SIFT and SURF, on the latest embedded GPU. Using conventional OpenGL shading language and recently developed OpenCL as the GPGPU software platforms, we compare the implementation efficiency and speed performance between each other as well as between GPU and CPU. Experimental result […]
View View   Download Download (PDF)   
Miroslav Mintal
Nowadays there exist several frameworks to utilize a computation power of graphics cards and other computational devices such as FPGA, ARM and multi-core processors. The best known are either low-level and need a lot of controlling code or are bounded only to special graphic cards. Furthermore there exist more specialized frameworks, mainly aimed to the […]
View View   Download Download (PDF)   
David Abdurachmanov, Kapil Arya, Josh Bendavid, Tommaso Boccali, Gene Cooperman, Andrea Dotti, Peter Elmer, Giulio Eulisse, Francesco Giacomini, Christopher D. Jones, Matteo Manzali, Shahzad Muzaffar
We report on our investigations into the viability of the ARM processor and the Intel Xeon Phi co-processor for scientific computing. We describe our experience porting software to these processors and running benchmarks using real physics applications to explore the potential of these processors for production physics processing.
View View   Download Download (PDF)   
David Abdurachmanov, Peter Elmer, Giulio Eulisse, Shahzad Muzaffar
Power efficiency is becoming an ever more important metric for both high performance and high throughput computing. Over the course of next decade it is expected that flops/watt will be a major driver for the evolution of computer architecture. Servers with large numbers of ARM processors, already ubiquitous in mobile computing, are a promising alternative […]
View View   Download Download (PDF)   
Page 1 of 212

* * *

* * *

Like us on Facebook

HGPU group

169 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1276 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: