4785
Jordi Roca, Victor Moya, Carlos Gonzalez, Chema Solis, Agustin Fernandez, Roger Espasa
The rapid pace of change in 3D game technology makes workload characterization necessary for every game generation. Comparing to CPU characterization, far less quantitative information about games is available. This paper focuses on analyzing a set of modern 3D games at the API call level and at the micro architectural level using the Attila simulator. […]
View View   Download Download (PDF)   
Ruigang Yang, Marc Pollefeys, Sifang Li
This paper presents a detailed description of an advanced real-time correlation-based stereo algorithm running completely on the graphics processing unit (GPU). This is important since it allows to free up the main processor for other tasks including high-level interpretation of the stereo results. Compared to previous GPU-based stereo implementations our implementation includes some advanced features […]
View View   Download Download (PDF)   
S.P. Callahan, M. Ikits, J.L.D. Comba, C.T. Silva
Harvesting the power of modern graphics hardware to solve the complex problem of real-time rendering of large unstructured meshes is a major research goal in the volume visualization community. While, for regular grids, texture-based techniques are well-suited for current GPUs, the steps necessary for rendering unstructured meshes are not so easily mapped to current hardware. […]
View View   Download Download (PDF)   
Anders Adamson, Marc Alexa, Andrew Nealen
We present a sampling strategy and rendering framework for intersectable models, whose surface is implicitly defined by a black box intersection test that provides the location and normal of the closest intersection of a ray with the surface. To speed up image generation despite potentially slow intersection tests, our method exploits spatial coherence by adjusting […]
View View   Download Download (PDF)   
Thomas Jansen, Bartosz von Rymon-Lipinski, Nils Hanssen, Erwin Keeve
The Fourier volume rendering technique operates in the frequency domain and creates line integral projections of a 3D scalar field. These projections can be efficiently generated in O(N^2 log N) by utilizing the Fourier Slice-Projection theorem. However, until now, the mathematical difficulty of the Fast Fourier Transform prevented acceleration by graphics hardware and therefore limited […]
View View   Download Download (PDF)   
Pascal Barla, Joelle Thollot, Lee Markosian
Traditional toon shading uses a 1D texture that describes how tone varies with surface orientation relative to a given light source. In this paper we describe two extensions to the basic algorithm that support view-dependent effects. First, we replace the 1D texture with a 2D texture whose second dimension corresponds to the desired “tone detail,” […]
View View   Download Download (PDF)   
Jens Krüger, Rüdiger Westermann
In this work, the emphasis is on the development of strategies to realize techniques of numerical computing on the graphics chip. In particular, the focus is on the acceleration of techniques for solving sets of algebraic equations as they occur in numerical simulation. We introduce a framework for the implementation of linear algebra operators on […]
View View   Download Download (PDF)   

* * *

* * *

Like us on Facebook

HGPU group

142 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1223 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: