13814
Pierre L'Ecuyer, David Munger, Nabil Kemerchou
We present clRNG, a library for uniform random number generation in OpenCL. Streams of random numbers act as virtual random number generators. They can be created on the host computer in unlimited numbers, and then used either on the host or on other computing devices by work items to generate random numbers. Each stream also […]
View View   Download Download (PDF)   
Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul Thomson, John Wickerson
We present a technique for the formal verification of GPU kernels, addressing two classes of correctness properties: data races and barrier divergence. Our approach is founded on a novel formal operational semantics for GPU kernels termed synchronous, delayed visibility (SDV) semantics, which captures the execution of a GPU kernel by multiple groups of threads. The […]
Gene Wu, Joseph L. Greathouse, Alexander Lyashevsky, Nuwan Jayasena, Derek Chiou
Graphics Processing Units (GPUs) have numerous configuration and design options, including core frequency, number of parallel compute units (CUs), and available memory bandwidth. At many stages of the design process, it is important to estimate how application performance and power are impacted by these options. This paper describes a GPU performance and power estimation model […]
View View   Download Download (PDF)   
Michel Steuwer, Christian Fensch, Sam Lindley, Christophe Dubach
Computing systems have become increasingly complex with the emergence of heterogeneous hardware combining multicore CPUs and GPUs. These parallel systems exhibit tremendous computational power at the cost of increased programming effort. This results in a tension between performance and code portability. Typically, code is either tuned in an low-level imperative language using hardware-specific optimizations to […]
View View   Download Download (PDF)   
Matthias Bach
Quarks and gluons are the building blocks of all hadronic matter, like protons and neutrons. Their interaction is described by Quantum Chromodynamics (QCD), a theory under test by large scale experiments like the Large Hadron Collider (LHC) at CERN and in the future at the Facility for Antiproton and Ion Research (FAIR) at GSI. However, […]
View View   Download Download (PDF)   
Amit Sabne, Putt Sakdhnagool, Seyong Lee, Jeffrey S. Vetter
Accelerator-based heterogeneous computing is gaining momentum in High Performance Computing arena. However, the increased complexity of the accelerator architectures demands more generic, high-level programming models. OpenACC is one such attempt to tackle the problem. While the abstraction endowed by OpenACC offers productivity, it raises questions on its portability. This paper evaluates the performance portability obtained […]
View View   Download Download (PDF)   
Philippe Helluy, Thomas Strub, Michel Massaro, Malcolm Roberts
Hyperbolic conservation laws are important mathematical models for describing many phenomena in physics or engineering. The Finite Volume (FV) method and the Discontinuous Galerkin (DG) methods are two popular methods for solving conservation laws on computers. Those two methods are good candidates for parallel computing: a) they require a large amount of uniform and simple […]
View View   Download Download (PDF)   
Thomas Weber
The adaptive subdivision step for surface tessellation is a key component of the Reyes rendering pipeline. While this operation has been successfully parallelized for execution on the GPU using a breadth-first traversal, the resulting implementations are limited by their high worst-case memory consumption and high global memory bandwidth utilization. This report proposes an alternate strategy […]
Yash Ukidave, Fanny Nina Paravecino, Leiming Yu, Charu Kalra, Amir Momeni, Zhongliang Chen, Nick Materise, Brett Daley, Perhaad Mistry, David Kaeli
Heterogeneous systems consisting of multi-core CPUs, Graphics Processing Units (GPUs) and many-core accelerators have gained widespread use by application developers and data-center platform developers. Modern day heterogeneous systems have evolved to include advanced hardware and software features to support a spectrum of application patterns. Heterogeneous programming frameworks such as CUDA, OpenCL, and OpenACC have all […]
Gabriele Cocco
The last few years has seen activity towards programming models, languages and frameworks to address the increasingly wide range and broad availability of heterogeneous computing resources through raised programming abstraction and portability across different platforms. The effort spent in simplifying parallel programming across heterogeneous platforms is often outweighed by the need for low-level control over […]
Michel Steuwer, Christian Fensch, Christophe Dubach
Computing systems have become increasingly complex with the emergence of heterogeneous hardware combining multicore CPUs and GPUs. These parallel systems exhibit tremendous computational power at the cost of increased programming effort. This results in a tension between achieving performance and code portability. Code is either tuned using device-specific optimizations to achieve maximum performance or is […]
View View   Download Download (PDF)   
Alexander Bussiere
When designing a safety system, the faster the response time, the greater the reflexes of the system to hazards. As more commercial interest in autonomous and assisted vehicles grows, the number one concern is safety. If the system cannot react as fast as or faster than an average human, then the public will deem it […]
View View   Download Download (PDF)   
Page 1 of 912345...Last »

* * *

* * *

Like us on Facebook

HGPU group

236 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1439 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: