13540
Philippe Helluy, Thomas Strub, Michel Massaro, Malcolm Roberts
Hyperbolic conservation laws are important mathematical models for describing many phenomena in physics or engineering. The Finite Volume (FV) method and the Discontinuous Galerkin (DG) methods are two popular methods for solving conservation laws on computers. Those two methods are good candidates for parallel computing: a) they require a large amount of uniform and simple […]
View View   Download Download (PDF)   
Thomas Weber
The adaptive subdivision step for surface tessellation is a key component of the Reyes rendering pipeline. While this operation has been successfully parallelized for execution on the GPU using a breadth-first traversal, the resulting implementations are limited by their high worst-case memory consumption and high global memory bandwidth utilization. This report proposes an alternate strategy […]
Yash Ukidave, Fanny Nina Paravecino, Leiming Yu, Charu Kalra, Amir Momeni, Zhongliang Chen, Nick Materise, Brett Daley, Perhaad Mistry, David Kaeli
Heterogeneous systems consisting of multi-core CPUs, Graphics Processing Units (GPUs) and many-core accelerators have gained widespread use by application developers and data-center platform developers. Modern day heterogeneous systems have evolved to include advanced hardware and software features to support a spectrum of application patterns. Heterogeneous programming frameworks such as CUDA, OpenCL, and OpenACC have all […]
Gabriele Cocco
The last few years has seen activity towards programming models, languages and frameworks to address the increasingly wide range and broad availability of heterogeneous computing resources through raised programming abstraction and portability across different platforms. The effort spent in simplifying parallel programming across heterogeneous platforms is often outweighed by the need for low-level control over […]
Michel Steuwer, Christian Fensch, Christophe Dubach
Computing systems have become increasingly complex with the emergence of heterogeneous hardware combining multicore CPUs and GPUs. These parallel systems exhibit tremendous computational power at the cost of increased programming effort. This results in a tension between achieving performance and code portability. Code is either tuned using device-specific optimizations to achieve maximum performance or is […]
View View   Download Download (PDF)   
Alexander Bussiere
When designing a safety system, the faster the response time, the greater the reflexes of the system to hazards. As more commercial interest in autonomous and assisted vehicles grows, the number one concern is safety. If the system cannot react as fast as or faster than an average human, then the public will deem it […]
View View   Download Download (PDF)   
Roman Iakymchuk, David Defour, Sylvain Collange, Stef Graillat
Due to non-associativity of floating-point operations and dynamic scheduling on parallel architectures, getting a bitwise reproducible floating-point result for multiple executions of the same code on different or even similar parallel architectures is challenging. In this paper, we address the problem of reproducibility in the context of matrix multiplication and propose an algorithm that yields […]
View View   Download Download (PDF)   
Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, John Wickerson
Concurrency is pervasive and perplexing, particularly on graphics processing units (GPUs). Current specifications of languages and hardware are inconclusive; thus programmers often rely on folklore assumptions when writing software. To remedy this state of affairs, we conducted a large empirical study of the concurrent behaviour of deployed GPUs. Armed with litmus tests (i.e. short concurrent […]
View View   Download Download (PDF)   
Wenhao Jia
In response to the ever growing demand for computing power, heterogeneous parallelism has emerged as a widespread computing paradigm in the past decade or so. In particular, massively parallel processors such as graphics processing units (GPUs) have become the prevalent throughput computing elements in heterogeneous systems, offering high performance and power efficiency for general-purpose workloads. […]
View View   Download Download (PDF)   
Owe Philipsen, Christopher Pinke, Alessandro Sciarra, Matthias Bach
We present the Lattice QCD application CL2QCD, which is based on OpenCL and can be utilized to run on Graphic Processing Units as well as on common CPUs. We focus on implementation details as well as performance results of selected features. CL2QCD has been successfully applied in LQCD studies at finite temperature and density and […]
Zachary Langbert, Mark C. Lewis
Physically accurate hard sphere collisions are inherently sequential as the order in which collisions occur can have a significant impact on the resulting system. This makes processing hard sphere collisions on parallel hardware challenging. We present an approach to solving this problem that can be implemented using OpenCL that runs on current hardware. This approach […]
View View   Download Download (PDF)   
Simon Naude
The graphics processing unit (GPU) has seen significant increase in performance over the past few years. Hence the interest in using GPUs for more general purposes has increased. The higher number of cores on a GPU allows it to outperform central processing units (CPUs). However, since in certain aspects instructions executed on the GPU must […]
Page 1 of 812345...Last »

* * *

* * *

Like us on Facebook

HGPU group

218 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1400 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: