12550
S.A. Arul Shalom, Manoranjan Dash
Graphics Processing Units (GPU) in today’s desktops can well be thought of as a high performance parallel processor. Traditionally, parallel computing is the usage of multiple computing resources to execute computational problems simultaneously. Such computations are possible using multi-core CPUs or computers with multiple CPUs or by using a network of computers in parallel. Today’s […]
View View   Download Download (PDF)   
Dariusz Cieslakiewicz
During times of stock market turbulence and crises, monitoring the clustering behaviour of financial instruments allows one to better understand the behaviour of the stock market and the associated systemic risks. In the study undertaken, I apply an effective and performant approach to classify data clusters in order to better understand correlations between stocks. The […]
View View   Download Download (PDF)   
Jianwei Cao, Qingkui Chen, Songlin Zhuang
With Extensive use of wireless sensor network is drawing increasing attention to the research on data-driven processing but it is a challenge to construct a system of concurrent processing for large-scale data streams (LCDS), a typical model of data-driven process. As Graphic Processing Unit (GPU) has good characteristics of SPMD (Single Program Multiple Data) while […]
View View   Download Download (PDF)   
Vidya Dhamdhere, Rahul G. Ghudji
K-Means is the most popular clustering algorithm in data mining. The size of various data sets has increased tremendously day by day. Due to recent development in the shared memory inexpensive architecture like Graphics Processing Units (GPU). The general – purpose applications are implemented on GPU using Compute Unified Device Architecture (CUDA). Cost effectiveness of […]
View View   Download Download (PDF)   
D. Hendricks, D. Cieslakiewicz, D. Wilcox, T. Gebbie
During times of stock market turbulence, monitoring the intraday clustering behaviour of financial instruments allows one to better understand market characteristics and systemic risks. While genetic algorithms provide a versatile methodology for identifying such clusters, serial implementations are computationally intensive and can take a long time to converge to the global optimum. We implement a […]
View View   Download Download (PDF)   
S. Yang, J. Dong, B. Yuan
ISODATA is a well-known clustering algorithm based on the nearest neighbor rule, which has been widely used in various areas. It employs a heuristic strategy allowing the clusters to split and merge as appropriate. However, since the volume of the data to be clustered in the real world is growing continuously, the efficiency of the […]
View View   Download Download (PDF)   
Vijal D. Patel, Sumitra Menaria
In today’s digital world, Data sets are increasing exponentially. Statistical analysis using clustering in various scientific and engineering applications become very challenging issue for such large data set. Clustering on huge data set and its performance are two major factors demand for optimization. Parallelization is well-known approach to optimize performance. It has been observed from […]
View View   Download Download (PDF)   
Alessio Magro
Since the discovery of RRATs, interest in single pulse radio searches has increased dramatically. Due to the large data volumes generated by these searches, especially in planned surveys for future radio telescopes, such searches have to be conducted in real-time. This has led to the development of a multitude of search techniques and real-time pipeline […]
View View   Download Download (PDF)   
Jiri Skala
This thesis deals with manipulating huge geometric data in the field of computer graphics. The proposed approach uses a data stream technique to allow processing gigantic datasets that by far exceed the size of the main memory. The amount of data is hierarchically reduced by clustering and replacing each cluster by a representative. The input […]
View View   Download Download (PDF)   
Pinghao Li, Xiaoqian Jiang, Shuang Wang, Jihoon Kim, Hongkai Xiong, Lucila Ohno-Machado
BACKGROUND AND OBJECTIVE: Short-read sequencing is becoming the standard of practice for the study of structural variants associated with disease. However, with the growth of sequence data largely surpassing reasonable storage capability, the biomedical community is challenged with the management, transfer, archiving, and storage of sequence data. METHODS: We developed Hierarchical mUlti-reference Genome cOmpression (HUGO), […]
Nam-Luc Tran, Quentin Dugauthier, Sabri Skhiri
In the context of processing high volumes of data, the recent developments have led to numerous models and frameworks of distributed processing running on clusters of commodity hardware. On the other side, the Graphics Processing Unit (GPU) has seen much enthusiastic development as a device for general-purpose intensive parallel computation. In this paper we propose […]
View View   Download Download (PDF)   
V.Saveetha, S.Sophia, V.Anusha Sowbarnika
Clustering, as a process of partitioning data elements with similar properties, is an essential task in many application areas. Due to technological advances, the amount as well as the dimensionality of data sets in general is steadily growing. Graphics Processing Units in today’s desktops can be thought of as a high performance parallel processor. As […]
View View   Download Download (PDF)   
Page 1 of 912345...Last »

* * *

* * *

Like us on Facebook

HGPU group

130 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1194 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: