14426
Annie Yang, Hari Mukka, Farbod Hesaaraki, Martin Burtscher
Due to their high peak performance and energy efficiency, massively parallel accelerators such as GPUs are quickly spreading in high-performance computing, where large amounts of floating-point data are processed, transferred, and stored. Such environments can greatly benefit from data compression if done sufficiently quickly. Unfortunately, most conventional compression algorithms are unsuitable for highly parallel execution. […]
View View   Download Download (PDF)   
Rongyang Shan, Chengyou Wang, Wei Huang, Xiao Zhou
In this paper, the parallel algorithm of JPEG coding based on GPU is proposed, most image compression systems have efficiency problem and the real-time of wireless multimedia sensor networks (WMSN) which used in image compression and transmission is also an issue need to be solved, so in this paper parallel computation is used in JPEG […]
View View   Download Download (PDF)   
P. Egert, V. Havran
Bidirectional Texture Function (BTF) as an effective visual fidelity representation of surface appearance is becoming more and more widely used. In this paper we report on contributions to BTF data compression for multi-level vector quantization. We describe novel decompositions that improve the compression ratio by 15% in comparison with the original method, without loss of […]
View View   Download Download (PDF)   
Stamos Katsigiannis, Vasilis Dimitsas, Dimitris Maroulis
Modern video compression algorithms put significant strain on a system’s CPU, especially for video encoding. The ever increasing demands for using video compression algorithms in a wide range of applications necessitate the use of processing components that boost the speed and quality of the video compression algorithm’s execution. The vast parallel computational capabilities of modern […]
View View   Download Download (PDF)   
Nasser Alqudami, Shin-Dug Kim
Discrete cosine transform (DCT) is one of the major operations in image compression standards and it requires intensive and complex computations. Recent computer systems and handheld devices are equipped with high computing capability devices such as a general-purpose graphics processing unit (GPGPU) in addition to the traditional multicores CPU. We develop an optimized parallel implementation […]
Hao Ji, Yaohang Li
In this paper, we present a GPU-accelerated implementation of randomized Singular Value Decomposition (SVD) algorithm on a large matrix to rapidly approximate the top-k dominating singular values and correspondent singular vectors. The fundamental idea of randomized SVD is to condense a large matrix into a small dense matrix by random sampling while keeping the important […]
View View   Download Download (PDF)   
Fan Wang, Dajiang Zhou, Satoshi Goto
This paper presents a high quality H.265/HEVC motion estimation implementation with the cooperation of CPU and GPU. The data dependency from MVP (Motion Vector Predictor) restricts the degree of parallelism on GPU. To overcome the constraint from MVP, we propose to use an estimated MVP on GPU and the accurate MVP to refine the motion […]
View View   Download Download (PDF)   
Daniel Ruiz Munoz
Higher video quality is demanded by the users of any kind of video stream service, including web applications, High Definition broadcast terrestrial services, etc. All of those video streams are encoded first using a compression format, one of them is H.264/MPEG-4 AVC. The main issue is that the better the quality of the video the […]
View View   Download Download (PDF)   
Jose M Gonzalez-Linares, Antonio Fuentes-Alventosa, Juan Gomez-Luna, Nicolas Guil
Data compression is the process of representing information in a compact form, in order to reduce the storage requirements and, hence, communication bandwidth. It has been one of the critical enabling technologies for the ongoing digital multimedia revolution for decades. In the variable-length encoding (VLE) compression method, most frequently occurring symbols are replaced by codes […]
View View   Download Download (PDF)   
Piotr Przymus
In recent years, processing and exploration of time series has experienced a noticeable interest. Growing volumes of data and needs of efficient processing pushed the research in new directions, including hardware based solutions. Graphics Processing Units (GPU) have significantly more applications than just rendering images. They are also used in general purpose computing to solve […]
View View   Download Download (PDF)   
Nathalie Kaligirwa, Eleazar Leal, Le Gruenwald, Jianting Zhang, Simin You
Global remote sensing and large-scale environment modeling have generated vast amounts of raster geospatial images. To gain a better understanding of this data, researchers are interested in performing spatial queries over them, and the computation of those queries’ results is greatly facilitated by the existence of spatial indices. Additionally, though there have been major advances […]
View View   Download Download (PDF)   
John Ashley, Amy J. Braverman
Multi-trial sampled K-means performance and scalability is studied as a stepping stone towards a Graphical Processing Unit implementation of Entropy Constrained Vector Quantization for interactive data compression. Basic parallelization strategies and data layout impacts are explored with K-means. The K-means implementation is extended to Entropy Constrained Vector Quantization, and additional tuning specific to the anticipated […]
View View   Download Download (PDF)   
Page 1 of 1012345...10...Last »

* * *

* * *

Follow us on Twitter

HGPU group

1545 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

275 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: