George Bahijevitch Bahij
Gotran provides a framework for working with systems of ordinary differential equations (ODEs): Its primary goal is to increase the workflow efficiency of computational modelling in biomedical research. The ODEs, given by the time derivative of state variables, are described in a Gotran form file and can be automatically translated into different outputs depending on […]
View View   Download Download (PDF)   
Laurence William James
As hardware has become increasingly powerful, the doors have been opened for a wide range of more computationally intensive simulation procedures. In particular, agent-based modelling has seen a recent surge of interest in the fields of Biology and Economics. For this project we propose using an agent-based model to create an implementation of the classic […]
Jose M. Cecilia, Andy Nisbet, Martyn Amos, Jose M. Garcia, Manuel Ujaldon
We present GPU implementations of two different nature-inspired optimization methods for well-known optimization problems. Ant Colony Optimization (ACO) is a two-stage population-based method modelled on the foraging behaviour of ants, while P systems provide a high-level computational modelling framework that combines the structure and dynamic aspects of biological systems (in particular, their parallel and non-deterministic […]
View View   Download Download (PDF)   
Fukang Yin, Fengshun Lu, Xiaoqun Cao, Junqiang Song
Profiles of refraction and bending angle, which computed through the forward model for GPSRO (Global Positioning System radio occultation), are extremely important for GPS radio occultation data assimilation to the forecast system of NWP (Numerical Weather Prediction). The daily processing of GPS RO data in assimilation system costs amount of time, thus there is an […]
Kalyan S. Perumalla, Brandon G. Aaby, Srikanth B. Yoginath, Sudip K. Seal
A methodology and its associated algorithms are presented for mapping a novel, field-based vehicular mobility model onto graphical processing unit computational platform for simulating mobility in large-scale road networks. Of particular focus is the achievement of real-time execution, on desktop platforms, of vehicular mobility on road networks comprised of millions of nodes and links, and […]
View View   Download Download (PDF)   
Yu Shi, William H. Green, Hsi-Wu Wong, Oluwayemisi O. Oluwole
Detailed modeling of complex combustion kinetics remains challenging and often intractable, due to prohibitive computational costs incurred when solving the associated large kinetic mechanisms. The Graphics Processing Unit (GPU), originally designed for graphics rendering on computer and gaming systems, has recently emerged as a powerful, cost-effective supplement to the Central Processing Unit (CPU) for dramatically […]
Paul Richmond, Dawn Walker, Simon Coakley, Daniela Romano
Driven by the availability of experimental data and ability to simulate a biological scale which is of immediate interest, the cellular scale is fast emerging as an ideal candidate for middle-out modelling. As with bottom-up’ simulation approaches, cellular level simulations demand a high degree of computational power, which in large-scale simulations can only be achieved […]
View View   Download Download (PDF)   

* * *

* * *

Follow us on Twitter

HGPU group

1658 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

335 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: