13138
Benjamin J. Block, Suam Kim, Peter Virnau, Kurt Binder
As a generic example for crystals where the crystal-fluid interface tension depends on the orientation of the interface relative to the crystal lattice axes, the nearest neighbor Ising model on the simple cubic lattice is studied over a wide temperature range, both above and below the roughening transition temperature. Using a thin film geometry $L_x […]
View View   Download Download (PDF)   
O. Kaczmarek, C. Schmidt, P. Steinbrecher, M. Wagner
Lattice Quantum Chromodynamics simulations typically spend most of the runtime in inversions of the Fermion Matrix. This part is therefore frequently optimized for various HPC architectures. Here we compare the performance of the Intel Xeon Phi to current Kepler-based NVIDIA Tesla GPUs running a conjugate gradient solver. By exposing more parallelism to the accelerator through […]
View View   Download Download (PDF)   
Ru Zhu
A micromagnetic simulator running on graphics processing unit (GPU) is presented. It achieves significant performance boost as compared to previous central processing unit (CPU) simulators, up to two orders of magnitude for large input problems. Different from GPU implementations of other research groups, this simulator is developed with C++ Accelerated Massive Parallelism (C++ AMP) and […]
View View   Download Download (PDF)   
M. P. Wachowiak, B. B. Sarlo, A. E. Lambe Foster
Much work has recently been reported in parallel GPU-based particle swarm optimization (PSO). Motivated by the encouraging results of these investigations, while also recognizing the limitations of GPU-based methods for big problems using a large amount of data, this paper explores the efficacy of employing other types of parallel hardware for PSO. Most commodity systems […]
View View   Download Download (PDF)   
Evan E. Schneider, Brant E. Robertson
We present Cholla (Computational Hydrodynamics On ParaLLel Architectures), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind (CTU) algorithm, a variety of exact and approximate Riemann solvers, and […]
View View   Download Download (PDF)   
Benjamin Brock, Andrew Belt, Jay Jay Billings, Mike Guidry
We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve […]
View View   Download Download (PDF)   
J. Spiechowicz, M. Kostur, L. Machura
This work presents an updated and extended guide on methods of a proper acceleration of the Monte Carlo integration of stochastic differential equations with the commonly available NVIDIA Graphics Processing Units using the CUDA programming environment. We outline the general aspects of the scientific computing on graphics cards and demonstrate them with two models of […]
View View   Download Download (PDF)   
F. T. Winter, M. A. Clark, R. G. Edwards, B. Joo
Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to […]
View View   Download Download (PDF)   
Alexander Ayriyan, Jan Busa Jr., Eugeny E. Donets, Hovik Grigorian, Jan Pribis
A model of a multilayer device with non-trivial geometrical and material structure and its working process is suggested. The thermal behavior of the device as one principle characteristic is simulated. The algorithm for solving the non-stationary heat conduction problem with a time-dependent periodical heating source is suggested. The algorithm is based on finite difference explicit–implicit […]
View View   Download Download (PDF)   
Loren Schwiebert, Eyad Hailat, Kamel Rushaidat, Jason Mick, Jeffrey Potoff
Maximizing the performance potential of the modern day GPU architecture requires judicious utilization of available parallel resources. Although dramatic reductions can often be obtained through straightforward mappings, further performance improvements often require algorithmic redesigns to more closely exploit the target architecture. In this paper, we focus on efficient molecular simulations for the GPU and propose […]
View View   Download Download (PDF)   
Doug Schouten, Adam DeAbreu, Bernd Stelzer
The matrix element method utilizes ab initio calculations of probability densities as powerful discriminants for processes of interest in experimental particle physics. The method has already been used successfully at previous and current collider experiments. However, the computational complexity of this method for final states with many particles and degrees of freedom sets it at […]
View View   Download Download (PDF)   
Arne Vansteenkiste, Jonathan Leliaert, Mykola Dvornik, Felipe Garcia-Sanchez, Bartel Van Waeyenberge
We report on the design, verification and performance of mumax3, an open-source GPU-accelerated micromagnetic simulation program. This software solves the time- and space dependent magnetization evolution in nano- to micro scale magnets using a finite-difference discretization. Its high performance and low memory requirements allow for large-scale simulations to be performed in limited time and on […]
Page 1 of 1612345...10...Last »

* * *

* * *

Like us on Facebook

HGPU group

184 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1314 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: