Lattice Quantum Chromodynamics simulations typically spend most of the runtime in inversions of the Fermion Matrix. This part is therefore frequently optimized for various HPC architectures. Here we compare the performance of the Intel Xeon Phi to current Kepler-based NVIDIA Tesla GPUs running a conjugate gradient solver. By exposing more parallelism to the accelerator through […]

November 18, 2014 by hgpu

A micromagnetic simulator running on graphics processing unit (GPU) is presented. It achieves significant performance boost as compared to previous central processing unit (CPU) simulators, up to two orders of magnitude for large input problems. Different from GPU implementations of other research groups, this simulator is developed with C++ Accelerated Massive Parallelism (C++ AMP) and […]

November 12, 2014 by hgpu

Much work has recently been reported in parallel GPU-based particle swarm optimization (PSO). Motivated by the encouraging results of these investigations, while also recognizing the limitations of GPU-based methods for big problems using a large amount of data, this paper explores the efficacy of employing other types of parallel hardware for PSO. Most commodity systems […]

October 20, 2014 by hgpu

We present Cholla (Computational Hydrodynamics On ParaLLel Architectures), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind (CTU) algorithm, a variety of exact and approximate Riemann solvers, and […]

October 18, 2014 by hgpu

We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve […]

September 23, 2014 by hgpu

This work presents an updated and extended guide on methods of a proper acceleration of the Monte Carlo integration of stochastic differential equations with the commonly available NVIDIA Graphics Processing Units using the CUDA programming environment. We outline the general aspects of the scientific computing on graphics cards and demonstrate them with two models of […]

September 19, 2014 by hgpu

Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to […]

August 27, 2014 by hgpu

A model of a multilayer device with non-trivial geometrical and material structure and its working process is suggested. The thermal behavior of the device as one principle characteristic is simulated. The algorithm for solving the non-stationary heat conduction problem with a time-dependent periodical heating source is suggested. The algorithm is based on finite difference explicit–implicit […]

August 27, 2014 by hgpu

Maximizing the performance potential of the modern day GPU architecture requires judicious utilization of available parallel resources. Although dramatic reductions can often be obtained through straightforward mappings, further performance improvements often require algorithmic redesigns to more closely exploit the target architecture. In this paper, we focus on efficient molecular simulations for the GPU and propose […]

August 19, 2014 by hgpu

The matrix element method utilizes ab initio calculations of probability densities as powerful discriminants for processes of interest in experimental particle physics. The method has already been used successfully at previous and current collider experiments. However, the computational complexity of this method for final states with many particles and degrees of freedom sets it at […]

August 2, 2014 by hgpu

We report on the design, verification and performance of mumax3, an open-source GPU-accelerated micromagnetic simulation program. This software solves the time- and space dependent magnetization evolution in nano- to micro scale magnets using a finite-difference discretization. Its high performance and low memory requirements allow for large-scale simulations to be performed in limited time and on […]

July 1, 2014 by hgpu

We present a way to combine Vlasov and two-fluid codes for the simulation of a collisionless plasma in large domains while keeping full information of the velocity distribution in localized areas of interest. This is made possible by solving the full Vlasov equation in one region while the remaining area is treated by a 5-moment […]

June 23, 2014 by hgpu