Density Functional Theory (DFT) is one of the most widely used quantum mechanical methods for calculations of the electronic structure of molecules and surfaces, which achieves an excellent balance of accuracy and computational cost. However, for large molecular systems with few hundred atoms, the computational costs are become very high. Therefore, there is a fast […]

June 19, 2012 by hgpu

Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great […]

May 29, 2012 by hgpu

OCTOPUS is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this article we present the ongoing efforts for the parallelisation of OCTOPUS. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has a great […]

April 12, 2012 by hgpu

We present the implementation of a full electronic structure calculation code on a hybrid parallel architecture with graphic processing units (GPUs). This implementation is performed on a free software code based on Daubechies wavelets. Such code shows very good performances, systematic convergence properties, and an excellent efficiency on parallel computers. Our GPU-based acceleration fully preserves […]

November 25, 2010 by hgpu