We present a highly optimized implementation of a Monte Carlo (MC) simulator for the three-dimensional Ising spin-glass model with bimodal disorder, i.e., the 3D Edwards-Anderson model running on CUDA enabled GPUs. Multi-GPU systems exchange data by means of the Message Passing Interface (MPI). The chosen MC dynamics is the classic Metropolis one, which is purely […]

November 5, 2014 by hgpu

We develop a parallel rejection algorithm to tackle the problem of low acceptance in Monte Carlo methods, and apply it to the simulation of the hopping conduction in Coulomb glasses using Graphics Processing Units, for which we also parallelize the update of local energies. In two dimensions, our parallel code achieves speedups of up to […]

July 24, 2014 by hgpu

Monte Carlo simulations of the Ising model play an important role in the field of computational statistical physics, and they have revealed many properties of the model over the past few decades. However, the effect of frustration due to random disorder, in particular the possible spin glass phase, remains a crucial but poorly understood problem. […]

November 25, 2013 by hgpu

We characterize the phase diagram of anisotropic Heisenberg spin glasses, finding both the spin and the chiral glass transition. We remark the presence of strong finite-size effects on the chiral sector. We find a unique phase transition for the chiral and spin glass sector, in the Universality class of Ising spin glasses. We focus on […]

September 9, 2013 by hgpu

We develop a highly optimized code for simulating the Edwards-Anderson Heisenberg model on graphics processing units (GPUs). Using a number of computational tricks such as tiling, data compression and appropriate memory layouts, the simulation code combining over-relaxation, heat bath and parallel tempering moves achieves a peak performance of 0.29 ns per spin update on realistic […]

May 1, 2012 by hgpu

Graphics processing units (GPUs) are recently being used to an increasing degree for general computational purposes. This development is motivated by their theoretical peak performance, which significantly exceeds that of broadly available CPUs. For practical purposes, however, it is far from clear how much of this theoretical performance can be realized in actual scientific applications. […]

January 12, 2011 by hgpu

Restricted solid on solid surface growth models can be mapped onto binary lattice gases. We show that efficient simulation algorithms can be realized on GPUs either by CUDA or by OpenCL programming. We consider a deposition/evaporation model following Kardar-Parisi-Zhang growth in 1+1 dimensions related to the Asymmetric Simple Exclusion Process and show that for sizes, […]

December 3, 2010 by hgpu

We present a framework for simulating signal propagation in geometric networks (i.e. networks that can be mapped to geometric graphs in some space) and for developing algorithms that estimate (i.e. map) the state and functional topology of complex dynamic geometric net- works. Within the framework we define the key features typically present in such networks […]

November 9, 2010 by hgpu

We describe different implementations of the 3D Heisenberg spin glass model for Graphics Processing Units (GPU). The results show that the fast shared memory gives better performance with respect to the slow global memory only if a multi-hit technique is used.

October 28, 2010 by hgpu