12089
Li Tian, Fugen Zhou, Cai Meng
We address the problem that multicore DSP system doesn’t support OpenCL programming. We designed compiler and proposed a runtime framework for TI multicore DSP, by which OpenCL parallel program could take advantage of multicore computing resource. Firstly, we make use of the LLVM and Clang compiler front-end to achieve source-to-source translation and in the next […]
View View   Download Download (PDF)   
Li Tian, Cai Meng, Fugen Zhou
This paper addresses the problem that multiple DSP system doesn’t support OpenCL programming. With the compiler, runtime and the kernel scheduler proposed, an OpenCL application becomes portable not only between multiple CPU and GPU, but also between embedded multiple DSP systems. Firstly, the LLVM compiler was imported for source-to-source translation in which the translated source […]
View View   Download Download (PDF)   
Farouk Mansouri, Sylvain Huet, Vincent Fristot, Dominique Houzet
Nowadays computer applications are becoming heavier and require, at the same time, real-time results. The Heterogeneous clusters with their computing power represent a good solution to this request. However, it is possible that during the execution, a computing element of the cluster becomes defaulting, needs maintenance, or that the load needs to be re-balanced. In […]
View View   Download Download (PDF)   
Xin Zhou, Norihiro Tomagou, Yasuaki Ito, Koji Nakano
Embedded multicore processors represented by FPGAs and GPUs have lately attracted considerable attention for their potential computation ability and power consumption. Recent FPGAs have hundreds of embedded DSP slices and block RAMs. For example, Xilinx Virtex-6 Family FPGAs have a DSP48E1 slice, which is a configurable logic block equipped with fast multipliers, adders, pipeline registers, […]
View View   Download Download (PDF)   
Zheng Zhou
A variety of hardware platforms for signal processing has emerged, from distributed systems such as Wireless Sensor Networks (WSNs) to parallel systems such as Multicore Programmable Digital Signal Processors (PDSPs), Multicore General Purpose Processors (GPPs), and Graphics Processing Units (GPUs) to heterogeneous combinations of parallel and distributed devices. When a signal processing application is implemented […]
View View   Download Download (PDF)   
Egil Fykse
The objective of this thesis is to compare the suitability of FPGAs, GPUs and DSPs for digital image processing applications. Normalized cross-correlation is used as a benchmark, because this algorithm includes convolution, a common operation in image processing and elsewhere. Normalized cross-correlation is a template matching algorithm that is used to locate predefined objects in […]
George Zaki
A variety of multiprocessor architectures has proliferated even for off-the-shelf computing platforms. To make use of these platforms, traditional implementation frameworks focus on implementing Digital Signal Processing (DSP) applications using special platform features to achieve high performance. However, due to the fast evolution of the underlying architectures, solution redevelopment is error prone and re-usability of […]
View View   Download Download (PDF)   
Akhtar Ali
Shared memory multi-core processor technology has seen a drastic development with faster and increasing number of processors per chip. This new architecture challenges computer programmers to write code that scales over these many cores to exploit full computational power of these machines. Shared-memory parallel programming paradigms such as OpenMP and Intel Threading Building Blocks (TBB) […]
View View   Download Download (PDF)   
Sreehari Ambuluri
The fast Fourier transform (FFT) plays an important role in digital signal processing (DSP) applications, and its implementation involves a large number of computations. Many DSP designers have been working on implementations of the FFT algorithms on different devices, such as central processing unit (CPU), Field programmable gate array (FPGA), and graphical processing unit (GPU), […]
View View   Download Download (PDF)   
Dan Connors, Kyle Dunn, Jeff Wiencrot
Open Compute Language (OpenCL) has been proposed as a platform-independent, parallel execution model to target heterogeneous systems, including multiple central processing units, graphics processing units (GPUs), and digital signal processors (DSPs). OpenCL parallelism scales with the available resources and hardware generational improvements due to the data-parallel nature of its kernels. Such parallel expressions must adhere […]
View View   Download Download (PDF)   
John Faella
This thesis focuses on the implementations of a support vector machine (SVM) algorithm on digital signal processor (DSP), graphics processor unit (GPU), and a common Intel i7 core architecture. The purpose of this work is to identify which of the three is most suitable for SVM implementation. The performance is measured by looking at the […]
View View   Download Download (PDF)   
Lai-Huei Wang, Chung-Ching Shen, Gunasekaran Seetharaman, Kannappan Palaniappan, Shuvra S. Bhattacharyya
Multidimensional synchronous dataflow (MDSDF) provides an effective model of computation for a variety of multidimensional DSP systems that have static dataflow structures. In this paper, we develop new methods for optimized implementation of MDSDF graphs on embedded platforms that employ multiple levels of parallelism to enhance performance at different levels of granularity. Our approach allows […]
View View   Download Download (PDF)   
Page 1 of 3123

* * *

* * *

Like us on Facebook

HGPU group

129 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1190 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: