Florencio Balboa Usabiaga
This thesis is devoted to the development of efficient numerical solvers for fluctuating hydrodynamics, in particular, for flows with immersed particles. In the first part of the thesis we develop numerical solvers able to work in a broad number of flow regimes with a high computational performance. To derive thermodynamically consistent set of equations in […]
Luis Miguel de la Cruz, Daniel Monsivais
A two-phase (water and oil) flow model in a homogeneous porous media is studied, considering immiscible and incompressible displacement. This model is numerically solved using the Finite Volume Method (FVM) and we compare four numerical schemes for the approximation of fluxes on the faces of the discrete volumes. We describe briefly how to obtain the […]
View View   Download Download (PDF)   
Roberto Velasco-Segura, Pablo L. Rendon
A form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite volume method using the Roe linearization was implemented to obtain numerically […]
View View   Download Download (PDF)   
Tomczak, T., Zadarnowska, K., Koza, Z., Matyka, M., Miroslaw, L.
While new power-efficient computer architectures exhibit spectacular theoretical peak performance, they require specific conditions to operate efficiently, which makes porting complex algorithms a challenge. Here, we report results of the semi-implicit method for pressure linked equations (SIMPLE) and the pressure implicit with operator splitting (PISO) methods implemented on the graphics processing unit (GPU). We examine […]
View View   Download Download (PDF)   
Benjamin Donald Cumming
The objective of this PhD research program is to investigate numerical methods for simulating variably-saturated flow and sea water intrusion in coastal aquifers in a high-performance computing environment. The work is divided into three overlapping tasks: to develop an accurate and stable finite volume discretisation and numerical solution strategy for the variably-saturated flow and salt […]
View View   Download Download (PDF)   
F. Balboa Usabiaga, R. Delgado-Buscalioni
We present a generalization of the inertial coupling (IC) [Usabiaga et al. J. Comp. Phys. 2013] which permits the resolution of radiation forces on small particles with arbitrary acoustic contrast factor. The IC method is based on a Eulerian-Lagrangian approach: particles move in continuum space while the fluid equations are solved in a regular mesh […]
Md. Lokman Hosain
In rolling of steel into thin sheets the final step is the cooling of the finished product on the Runout Table. In this thesis, the heat transfer into a water jet impinging on a hot flat steel plate was studied as the key cooling process on the runout table. The temperature of the plate was […]
View View   Download Download (PDF)   
Brian Hamilton, Craig J. Webb
In this paper, a room acoustics simulation using a finite difference approximation on a face-centered cubic (FCC) grid with finite volume impedance boundary conditions is presented. The finite difference scheme is accelerated on an Nvidia Tesla K20 graphics processing unit (GPU) using the CUDA programming language. A performance comparison is made between 27-point finite difference […]
View View   Download Download (PDF)   
Chi-Jer Yu, Chii-Tung Liu
In this paper, we mainly report on our experience and strategy in programming graphics processing units (GPUs) as fast parallel floating point coprocessors to accelerate the simulation of travelling shock waves of the 2-D Euler equation by the finite volume method. The GPU code is specialized in CUDA (Compute Unified Device Architecture) for which we […]
View View   Download Download (PDF)   
Kyung-Kyu Kang, Dongho Kim
We present a real-time subsurface scattering simulation to perform real-time rendering of translucent particle-based fluids. After particle-based fluid simulation, we immediately build voxelized fluids, calledVoronoi fluids, with particle locations and neighbour lists using GPUs. And then, we perform a multiple subsurface scattering simulation over the Voronoi fluids with the diffusion equation (DE). We employ Finite […]
View View   Download Download (PDF)   
Hrag Gorune Krikor Ohannessian
We present CUDACLAW, a data-parallel solution framework for 2D and 3D hyperbolic partial differential equation (PDE) systems. CUDACLAW is a finite volume method based on time adaptive point-wise Riemann problem solvers, and can handle linear and nonlinear problems. The framework is tailored for the GPU architecture, optimized to take advantage of the powerful computational potential, […]
View View   Download Download (PDF)   
Alexander Breuer, Michael Bader
We present a software package that supports teaching different parallel programming models in a computational science and engineering context. It implements a Finite Volume solver for the shallow water equations, with application to tsunami simulation in mind. The numerical model is kept simple, using patches of Cartesian grids as computational domain, which can be connected […]
Page 1 of 212

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 11.4
  • SDK: AMD APP SDK 2.8
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 5.0.35, AMD APP SDK 2.8

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: