This work is related with the implementation of a finite volume method to solve the 2D Shallow Water Equations on Graphic Processing Units (GPU). The strategy is fully oriented to work efficiently with unstructured meshes which are widely used in many fields of Engineering. Due to the design of the GPU cards, structured meshes are […]

September 23, 2014 by alacasta

As parallel and heterogeneous computing becomes more and more a necessity for implementing high performance simulators, it becomes increasingly harder for scientists and engineers without experience in high performance computing to achieve good performance. Even for those who knows how to write efficient code the process for doing so is time consuming and error prone, […]

September 8, 2014 by hgpu

The Kinetic Theory of Gases has long been established as a useful tool for the solution of modern Computational Fluid Dynamics (CFD) problems. Together with the Finite Volume Method, such approaches have been popular in CFD for over 30 years, with techniques such as the Equilibrium Flux Method (EFM) or Kinetic Flux Vector Splitting (KFVS), […]

August 19, 2014 by hgpu

The last decade saw the long tradition of frequency scaling of processing units grind to a halt, and efforts were re-focused on maintaining computational growth by other means; such as increased parallelism, deep memory hierarchies and complex execution logic. After a long period of "boring productivity", a host of new architectures, accelerators, programming languages and […]

July 24, 2014 by hgpu

The goal of this thesis has been to develop a fast simulator for large-scale migration of CO2 in saline aquifers. We have also focused on being able to let the CO2 storage atlas from the Norwegian Petroleum Directorate specify the reservoir properties. In order to meet the demands of simulating on large data sets combined […]

April 29, 2014 by hgpu

This thesis is devoted to the development of efficient numerical solvers for fluctuating hydrodynamics, in particular, for flows with immersed particles. In the first part of the thesis we develop numerical solvers able to work in a broad number of flow regimes with a high computational performance. To derive thermodynamically consistent set of equations in […]

March 17, 2014 by hgpu

A two-phase (water and oil) flow model in a homogeneous porous media is studied, considering immiscible and incompressible displacement. This model is numerically solved using the Finite Volume Method (FVM) and we compare four numerical schemes for the approximation of fluxes on the faces of the discrete volumes. We describe briefly how to obtain the […]

January 6, 2014 by hgpu

A form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite volume method using the Roe linearization was implemented to obtain numerically […]

November 14, 2013 by hgpu

While new power-efficient computer architectures exhibit spectacular theoretical peak performance, they require specific conditions to operate efficiently, which makes porting complex algorithms a challenge. Here, we report results of the semi-implicit method for pressure linked equations (SIMPLE) and the pressure implicit with operator splitting (PISO) methods implemented on the graphics processing unit (GPU). We examine […]

September 9, 2013 by Vratis

The objective of this PhD research program is to investigate numerical methods for simulating variably-saturated flow and sea water intrusion in coastal aquifers in a high-performance computing environment. The work is divided into three overlapping tasks: to develop an accurate and stable finite volume discretisation and numerical solution strategy for the variably-saturated flow and salt […]

July 10, 2013 by hgpu

We present a generalization of the inertial coupling (IC) [Usabiaga et al. J. Comp. Phys. 2013] which permits the resolution of radiation forces on small particles with arbitrary acoustic contrast factor. The IC method is based on a Eulerian-Lagrangian approach: particles move in continuum space while the fluid equations are solved in a regular mesh […]

July 3, 2013 by hgpu

In rolling of steel into thin sheets the final step is the cooling of the finished product on the Runout Table. In this thesis, the heat transfer into a water jet impinging on a hot flat steel plate was studied as the key cooling process on the runout table. The temperature of the plate was […]

July 2, 2013 by hgpu