12758
Gary K. Chen, Eric Chi, John Ranola, Kenneth Lange
The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical […]
Vijal D. Patel, Sumitra Menaria
In today’s digital world, Data sets are increasing exponentially. Statistical analysis using clustering in various scientific and engineering applications become very challenging issue for such large data set. Clustering on huge data set and its performance are two major factors demand for optimization. Parallelization is well-known approach to optimize performance. It has been observed from […]
View View   Download Download (PDF)   
Jens Gustedt, Stephane Vialle, Patrick Mercier
Modern parallel programming requires a combination of different paradigms, expertise and tuning, that correspond to the different levels in today’s hierarchical architectures. To cope with the inherent difficulty, ORWL (ordered read-write locks) presents a new paradigm and toolbox centered around local or remote resources, such as data, processors or accelerators. ORWL programmers describe their computation […]
View View   Download Download (PDF)   
Debasis Pattanaik, Ajaya Kumar Malik, Pradeep Kumar Mallick
Text Clustering is the problem of dividing text documents into groups, such that documents in same group are similar to one another and different from documents in other groups. Because of the general tendency of texts forming hierarchies, text clustering is best performed by using a hierarchical clustering method. An important aspect while clustering large […]
View View   Download Download (PDF)   
Jeffrey DiMarco, Michela Taufer
In this paper, we aim to quantify the performance gains of dynamic parallelism. The newest version of CUDA, CUDA 5, introduces dynamic parallelism, which allows GPU threads to create new threads, without CPU intervention, and adapt to its data. This effectively eliminates the superfluous back and forth communication between the GPU and CPU through nested […]
View View   Download Download (PDF)   
Atul Bagga, Durga Toshniwal
Text Clustering is the problem of dividing text documents into groups, such that documents in same group are similar to one another and different from documents in other groups. Because of the general tendency of texts forming hierarchies, text clustering is best performed by using a hierarchical clustering method. An important aspect while clustering large […]
View View   Download Download (PDF)   
B.E. Dharneesh Talasu
Graphics processing units (GPUs) traditionally have been used to accelerate only parts of the graphics pipelines. The emergence of the new age GPUs as highly parallel, multi-threaded and many core processor systems with the ability to perform general purpose computations has opened doors for new form of heterogeneous computing where the GPU and CPU can […]
View View   Download Download (PDF)   
Bianca Wackersreuther
Knowledge extraction from structured data aims for identifying valid, novel, potentially useful, and ultimately understandable patterns in the data. The core step of this process is the application of a data mining algorithm in order to produce an enumeration of particular patterns and relationships in large databases. Clustering is one of the major data mining […]
View View   Download Download (PDF)   
Sejun Kim
Hierarchical clustering is an important and powerful but computationally extensive operation. Its complexity motivates the exploration of highly parallel approaches such as Adaptive Resonance Theory (ART). Although ART has been implemented on GPU processors, this paper presents the first hierarchical ART GPU implementation we are aware of. Each ART layer is distributed in the GPU’s […]
View View   Download Download (PDF)   
Roberto Cespi, Andreas Kolb, Marvin Lindner
Fast and robust hand segmentation and tracking is an essential basis for gesture recognition and thus an important component for contact-less human-computer interaction (HCI). Hand gesture recognition based on 2D video data has been intensively investigated. However, in practical scenarios purely intensity based approaches suffer from uncontrollable environmental conditions like cluttered background colors. In this […]
View View   Download Download (PDF)   
Xiangkun Zhao, Fengxia Li, Yufeng Chen, Shouyi Zhan
A new real-time point-based rendering method of large outdoor scenes is presented. Based on our interactive subdivide method, polygonal trees and other vegetation were converted to point-based models, and then different level of details of trees and other vegetation were created using hierarchical clustering. Different level of details of terrain were created using diamond tree […]
View View   Download Download (PDF)   
Dar J. Chang, Ahmed H. Desoky, Ming Ouyang, Eric C. Rouchka
Graphics processing units (GPUs) are powerful computational devices tailored towards the needs of the 3-D gaming industry for high-performance, real-time graphics engines. Nvidia Corporation released a new generation of GPUs designed for general-purpose computing in 2006, and it released a GPU programming language called CUDA in 2007. The DNA microarray technology is a high throughput […]
View View   Download Download (PDF)   

* * *

* * *

Like us on Facebook

HGPU group

147 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1229 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: