Feifei Shen, Zhenjian Song, Congrui Wu, Jiaqi Geng, Qingyun Wang
Study of general purpose computation by GPU (Graphics Processing Unit) can improve the image processing capability of micro-computer system. This paper studies the parallelism of the different stages of decimation in time radix 2 FFT algorithm, designs the butterfly and scramble kernels and implements 2D FFT on GPU. The experiment result demonstrates the validity and […]
View View   Download Download (PDF)   
Jan Verschelde, Xiangcheng Yu
Polynomial systems occur in many areas of science and engineering. Unlike general nonlinear systems, the algebraic structure enables to compute all solutions of a polynomial system. We describe our massive parallel predictor-corrector algorithms to track many solution paths of a polynomial homotopy. The data parallelism that provides the speedups stems from the evaluation and differentiation […]
View View   Download Download (PDF)   
Robert Merrison-Hort
In non-linear systems, where explicit analytic solutions usually can’t be found, visualisation is a powerful approach which can give insights into the dynamical behaviour of models; it is also crucial for teaching this area of mathematics. In this paper we present new software, Fireflies, which exploits the power of graphical processing unit (GPU) computing to […]
Weifeng Liu, Brian Vinter
Sparse matrix-vector multiplication (SpMV) is a central building block for scientific software and graph applications. Recently, heterogeneous processors composed of different types of cores attracted much attention because of their flexible core configuration and high energy efficiency. In this paper, we propose a compressed sparse row (CSR) format based SpMV algorithm utilizing both types of […]
Weifeng Liu, Brian Vinter
General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method (AMG), breadth first search and shortest path problem. Compared to other sparse BLAS routines, an efficient parallel SpGEMM implementation has to handle extra irregularity from three aspects: (1) the number of nonzero entries in the resulting sparse […]
Krzysztof Banas, Filip Kruzel, Jan Bielanski
The paper presents investigations on the implementation and performance of the finite element numerical integration algorithm for first order approximations and three processor architectures, popular in scientific computing, classical CPU, Intel Xeon Phi and NVIDIA Kepler GPU. A unifying programming model and portable OpenCL implementation is considered for all architectures. Variations of the algorithm due […]
View View   Download Download (PDF)   
Weifeng Liu, Brian Vinter
Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPUs, GPUs and Xeon Phi. First, the CSR5 format is insensitive to the sparsity structure of the input matrix. Thus the […]
Ken Miura, Tetsuaki Mano, Atsushi Kanehira, Yuichiro Tsuchiya, Tatsuya Harada
MILJS is a collection of state-of-the-art, platform-independent, scalable, fast JavaScript libraries for matrix calculation and machine learning. Our core library offering a matrix calculation is called Sushi, which exhibits far better performance than any other leading machine learning libraries written in JavaScript. Especially, our matrix multiplication is 177 times faster than the fastest JavaScript benchmark. […]
Sergey Voronin, Per-Gunnar Martinsson
This document describes an implementation in C of a set of randomized algorithms for computing partial Singular Value Decompositions (SVDs). The techniques largely follow the prescriptions in the article "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions," N. Halko, P.G. Martinsson, J. Tropp, SIAM Review, 53(2), 2011, pp. 217-288, but with some […]
Jan Verschelde, Xiangcheng Yu
Numerical continuation methods apply predictor-corrector algorithms to track a solution path defined by a family of systems, the so-called homotopy. The systems we consider are defined by polynomials in several variables with complex coefficients. For larger dimensions and degrees, the numerical conditioning worsens and hardware double precision becomes often insufficient to reach the end of […]
Andrea Vedaldi, Karel Lenc
MatConvNet is an implementation of Convolutional Neural Networks (CNNs) for MATLAB. The toolbox is designed with an emphasis on simplicity and flexibility. It exposes the building blocks of CNNs as easy-to-use MATLAB functions, providing routines for computing linear convolutions with filter banks, feature pooling, and many more. In this manner, MatConvNet allows fast prototyping of […]
View View   Download Download (PDF)   
O. Kaczmarek, C. Schmidt, P. Steinbrecher, M. Wagner
Lattice Quantum Chromodynamics simulations typically spend most of the runtime in inversions of the Fermion Matrix. This part is therefore frequently optimized for various HPC architectures. Here we compare the performance of the Intel Xeon Phi to current Kepler-based NVIDIA Tesla GPUs running a conjugate gradient solver. By exposing more parallelism to the accelerator through […]
View View   Download Download (PDF)   
Page 1 of 612345...Last »

* * *

* * *

Follow us on Twitter

HGPU group

1496 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

255 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: