12787
Marcos Novalbos, Jaime Gonzalez, Miguel A. Otaduy, Roberto Martinez Benito, Alberto Sanchez
Molecular dynamics simulations allow us to study the behavior of complex biomolecular systems by modeling the pairwise interaction forces between all atoms. Molecular systems are subject to slowly decaying electrostatic potentials, which turn molecular dynamics into an n-body problem. In this paper, we present a parallel and scalable solution to compute long-range molecular forces, based […]
View View   Download Download (PDF)   
David J. Hardy, John E. Stone, Klaus Schulten
Physical and engineering practicalities involved in microprocessor design have resulted in flat performance growth for traditional single-core microprocessors. The urgent need for continuing increases in the performance of scientific applications requires the use of many-core processors and accelerators such as graphics processing units (GPUs). This paper discusses GPU acceleration of the multilevel summation method for […]
View View   Download Download (PDF)   
John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy, Leonardo G. Trabuco, Klaus Schulten
Molecular mechanics simulations offer a computational approach to study the behavior of biomolecules at atomic detail, but such simulations are limited in size and timescale by the available computing resources. State-of-the-art graphics processing units (GPUs) can perform over 500 billion arithmetic operations per second, a tremendous computational resource that can now be utilized for general […]
View View   Download Download (PDF)   

* * *

* * *

Follow us on Twitter

HGPU group

1746 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

371 people like HGPU on Facebook

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: