This thesis presents high-order numerical methods for time-dependent simulations of oceanic wave propagation on modern many-core hardware architecture. Simulation of the waves such as tsunami, is challenging because of the varying fluid depths, propagation in many regions, requirement of high resolution near the shore, complex nonlinear wave phenomenon, and necessity of faster than real-time predictions. […]

February 8, 2016 by hgpu

Compact finite difference schemes are widely used in the direct numerical simulation of fluid flows for their ability to better resolve the small scales of turbulence. However, they can be expensive to evaluate and difficult to parallelize. In this work, we present an approach for the computation of compact finite differences and similar tridiagonal schemes […]

February 3, 2016 by hgpu

Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational […]

January 29, 2016 by hgpu

A new solver is developed to numerically simulate the melting phase change with natural convection. This solver was implemented on a single Nvidia GPU based on the CUDA technology in order to simulate the melting phase change in a 2D rectangular enclosure. The Rayleigh number is of the order of magnitude of 108 and Prandlt […]

May 10, 2015 by hgpu

Direct numerical simulation (DNS) of a round jet in crossflow based on lattice-Boltzmann method (LBM) is carried out on multi-GPU cluster. Data-parallel SIMT (Single- Instruction Multiple-Thread) characteristic of GPU matches the parallelism of LBM well, which leads to the high efficiency of GPU on the LBM solver. With present GPU settings (6 Nvidia Telsa K20M), […]

March 6, 2015 by hgpu

High performance computing of Meshless Time Domain Method (MTDM) on multi-GPU using the supercomputer HA-PACS (Highly Accelerated Parallel Advanced system for Computational Sciences) at University of Tsukuba is investigated. Generally, the finite difference time domain (FDTD) method is adopted for the numerical simulation of the electromagnetic wave propagation phenomena. However, the numerical domain must be […]

February 23, 2015 by hgpu

Hyperbolic conservation laws are important mathematical models for describing many phenomena in physics or engineering. The Finite Volume (FV) method and the Discontinuous Galerkin (DG) methods are two popular methods for solving conservation laws on computers. Those two methods are good candidates for parallel computing: a) they require a large amount of uniform and simple […]

February 23, 2015 by hgpu

We present a new numerical scheme to solve the transfer of diffuse radiation on three-dimensional mesh grids which is efficient on processors with highly parallel architecture such as recently popular GPUs and CPUs with multi- and many-core architectures. The scheme is based on the ray-tracing method and the computational cost is proportional to N^5/3_m where […]

October 8, 2014 by hgpu

Understanding the interaction of vortices with inclusions in type-II superconductors is a major outstanding challenge both for fundamental science and energy applications. At application-relevant scales, the long-range interactions between a dense configuration of vortices and the dependence of their behavior on external parameters, such as temperature and an applied magnetic field, are all important to […]

October 3, 2014 by hgpu

Over the past decade, the design of microprocessors has been shifting to a new model where the microprocessor has multiple homogeneous processing units, aka cores, as a result of heat dissipation and energy consumption issues. Meanwhile, the demand for heterogeneity increases in computing systems due to the need for high performance computing in recent years. […]

August 27, 2014 by hgpu

This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and […]

August 13, 2014 by hgpu

The purpose of the work is twofold. Firstly, it is devoted to the development of efficient parallel algorithms for large-scale simulations of turbulent flows on different supercomputer architectures. It reports experience with massively-parallel accelerators including graphics processing units of AMD and NVIDIA and Intel Xeon Phi coprocessors. Secondly, it introduces new series of direct numerical […]

August 10, 2014 by hgpu