Hong Xiang Gong, Liu Hao
With the development of the semiconductor technology, the GPU’s floating point computing capacity improves rapidly. How to apply the GPU technology to the non-graphic computing field becomes a highlight in the research of high performance computing. The Roberts edge detection algorithm is a typical image processing algorithms. A fast Roberts edge detection algorithm is presented […]
View View   Download Download (PDF)   
Dongfeng Xu, Yehan Zheng, Yuefang Gao, Dong Wang
A novel method is proposed for fast computing discrete orthogonal moments of large scale digital images using CUDA (Compute Unified Device Architecture) on GPU (Graphic Processing Unit). After original input image loading and mapping by partition model, parallelism was implemented by dividing onto GPU. Experimental results show that the proposed method outperforms the existing software […]
View View   Download Download (PDF)   
Weidong Sun, Zongmin Ma
Suffix array is a simpler and compact alternative to the suffix tree, lexicographic name construction is the fundamental building block in suffix array construction process. This paper depicts the design issues of first data parallel implementation of the lexicographic name construction algorithm on a commodity multiprocessor GPU using the Compute Unified Device Architecture (CUDA) platform, […]
View View   Download Download (PDF)   

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: