2987
Daniel Ruijters, Bart M. ter Haar Romeny, Paul Suetens
Elastic intra-patient registration can be used to correct for local motion within biomedical images. The application of elastic registration during interventional treatment is seriously hampered by its considerable computation time. The Graphics Processing Units (GPU) can be used to accelerate the calculation of such elastic registrations, without changing the basic registration algorithm. This article discusses […]
View View   Download Download (PDF)   
Stephane Gobron, Herve Bonafos and Daniel Mestre
We propose a graphics processor unit (GPU)-accelerated method for real-time computing and rendering cellular automata (CA) that is applied to hexagonal grids.Based on our previous work [9] -which introduced first and second dimensional cases- this paper presents a model for hexagonal grid algorithms. Proposed method is novel and it encodes and transmits large CA key-codes […]
View View   Download Download (PDF)   
Stephane Gobron, Daniel Mestre
We propose a method for generating all possible rules of multi-dimension Boolean cellular automata (CA). Based on an original encoding method and the programming of graphical processor units (GPU), this method allows us to visualize the CA information flow in real-time so that emerging behaviors can be easily identified. Algorithms of first and von Neumann […]
View View   Download Download (PDF)   
Li Zhang, R. Nevatia
We describe an efficient design for scan-window based object detectors using a general purpose graphics hardware computing (GPGPU) framework. While the design is particularly applied to built a pedestrian detector that uses histogram of oriented gradient (HOG) features and the support vector machine (SVM) classifiers, the methodology we use is generic and can be applied […]
View View   Download Download (PDF)   
Qian Yu, G. Medioni
We describe a GPU-based implementation of motion detection from a moving platform. Motion detection from a moving platform is inherently difficult as the moving camera induces 2D motion field in the entire image. A step compensating for camera motion is required prior to estimating of the background model. Due to inevitable registration errors, the background […]
View View   Download Download (PDF)   

* * *

* * *

Like us on Facebook

HGPU group

128 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1194 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: