7480
Quentin Avril, Valerie Gouranton, Bruno Arnaldi
This paper presents a novel and efficient GPU-based parallel algorithm to cull non-colliding object pairs in very large-scale dynamic simulations. It allows to cull objects in less than 25ms with more than 100K objects. It is designed for many-core GPU and fully exploits multi-threaded capabilities and data-parallelism. In order to take advantage of the high […]
View View   Download Download (PDF)   
Quentin Avril, Valerie Gouranton, Bruno Arnaldi
In this paper we present a new technique to dynamically adapt the first step (broad phase) of the collision detection process on hardware architecture during simulation. Our approach enables to face the unpredictable evolution of the simulation scenario (this includes addition of complex objects, deletion, split into several objects, …). Our technique of dynamic adaptation […]
View View   Download Download (PDF)   
Oliver Kutter, Ramtin Shams, Nassir Navab
We present a fast GPU-based method for simulation of ultrasound images from volumetric CT scans and their visualization. The method uses a ray-based model of the ultrasound to generate view-dependent ultrasonic effects such as occlusions, large-scale reflections and attenuation combined with speckle patterns derived from pre-processing the CT image using a wave-based model of ultrasound […]
View View   Download Download (PDF)   

* * *

* * *

Like us on Facebook

HGPU group

192 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1329 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: