W. B. Langdon, M. Harman
Genetic Programming (GP) may dramatically increase the performance of software written by domain experts. GP and autotuning are used to optimise and refactor legacy GPGPU C code for modern parallel graphics hardware and software. Speed ups of more than six times on recent nVidia GPU cards are reported compared to the original kernel on the […]
Gabriel Hjort Blindell
Today, a plethora of parallel execution platforms are available. One platform in particular is the GPGPU – a massively parallel architecture designed for exploiting data parallelism. However, GPGPUS are notoriously difficult to program due to the way data is accessed and processed, and many interconnected factors affect the performance. This makes it an exceptionally challengingtask […]
View View   Download Download (PDF)   
M. Al-Turany
The graphics processor units (GPUs) have evolved into high-performance co-processors that can be easily programmed with common high-level language such as C, Fortran and C++. Today’s GPUs greatly outpace CPUs in arithmetic performance and memory bandwidth, making them the ideal coprocessor to accelerate a variety of data parallel applications. Here, we shall describe the application […]
View View   Download Download (PDF)   
Alexander Schick, Rainer Stiefelhagen
We present an approach to compute the visual hulls of multiple people in real-time in the presence of occlusions. We prove that the resulting visual hulls are correct and minimal under occlusions. Our proposed algorithm runs completely on the GPU with framerates up to 50fps for multiple people using only one computer equipped with off-the-shelf […]
View View   Download Download (PDF)   

* * *

* * *

Follow us on Twitter

HGPU group

1662 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

337 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: