6073
Eli Koffi Kouassi, Toshiyuki Amagasaa, Hiroyuki Kitagawa
In this paper, we propose a scheme to accelerate the Probabilistic Latent Semantic Indexing (PLSI), which is an automated document indexing method based on a statistical latent semantic model, exploiting the high parallelism of Graphics Processing Unit (GPU). Our proposal is composed of three techniques: the first one is to accelerate the Expectation-Maximization (EM) computation […]
View View   Download Download (PDF)   
Aalap Tripathy, Suneil Mohan, Rabi Mahapatra
Emerging semantic search techniques require fast comparison of large "concept trees". This paper addresses the challenges involved in fast computation of similarity between two large concept trees using a CUDA-enabled GPGPU co-processor. We propose efficient techniques for the same using fast hash computations, membership tests using Bloom Filters and parallel reduction. We show how a […]
View View   Download Download (PDF)   
Abhinandan Majumdar, Srihari Cadambi, Srimat T. Chakradhar, Hans Peter Graf
Semantic text analysis is a technique used in advertisement placement, cognitive databases and search engines. With increasing amounts of data and stringent response-time requirements, improving the underlying implementation of semantic analysis becomes critical. To this end, we look at Supervised Semantic Indexing (SSI), a recently proposed algorithm for semantic analysis. SSI ranks a large number […]
View View   Download Download (PDF)   
Surendra Byna,Jiayuan Meng,Anand Raghunathan,Srimat Chakradhar,Srihari Cadambi
Semantic indexing is a popular technique used to access and organize large amounts of unstructured text data. We describe an optimized implementation of semantic indexing and document search on manycore GPU platforms. We observed that a parallel implementation of semantic indexing on a 128-core Tesla C870 GPU is only 2.4X faster than a sequential implementation […]

* * *

* * *

Like us on Facebook

HGPU group

184 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1314 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: