Usman Roshan
Exact short read mapping to whole genomes with the Smith-Waterman algorithm is computationally expensive yet highly accurate when aligning reads with mismatches and gaps. We introduce a GPU program called MaxSSmap with the aim of achieving comparable accuracy to Smith-Waterman but with faster runtimes. Similar to mainstream approaches MaxSSmap identifies a local region of the […]
View View   Download Download (PDF)   
Abdullah Gharaibeh, Matei Ripeanu
GPUs offer drastically different performance characteristics compared to traditional multicore architectures. To explore the tradeoffs exposed by this difference, we refactor MUMmer, a widely-used, highly-engineered bioinformatics application which has both CPU- and GPU-based implementations. We synthesize our experience as three high-level guidelines to design efficient GPU-based applications. First, minimizing the communication overheads is as important […]
Cole Trapnell, Michael C. Schatz
MUMmerGPU uses highly-parallel commodity graphics processing units (GPU) to accelerate the data-intensive computation of aligning next generation DNA sequence data to a reference sequence for use in diverse applications such as disease genotyping and personal genomics. MUMmerGPU 2.0 features a new stackless depth-first-search print kernel and is 13× faster than the serial CPU version of […]

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 11.4
  • SDK: AMD APP SDK 2.8
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 5.0.35, AMD APP SDK 2.8

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hgpu.org