Jonathan Wong, Ellen Kuhl, Eric Darve
Recently, graphics processors (GPUs) have been increasingly leveraged in a variety of scientific computing applications. However, architectural differences between CPUs and GPUs necessitate the development of algorithms that take advantage of GPU hardware. As sparse matrix vector multiplication (SPMV) operations are commonly used in finite element analysis, a new SPMV algorithm and several variations are […]
View View   Download Download (PDF)   
Michael Driscoll
We present an interpretation of subdivision surface evaluation in the language of linear algebra. Specifically, the vector of surface points can be computed by left-multiplying the vector of control points by a sparse subdivision matrix. This "matrix-driven" interpretation applies to any level of subdivision, holds for many common subdivision schemes (including Catmull-Clark and Loop), supports […]
Wangdong Yang, Kenli Li, Zeyao Mo, Keqin Li
This paper presents a sparse matrix partitioning strategy to improve the performance of SpMV on GPUs and multicore CPUs. This method has wide adaptability for different types of sparse matrices, and is different from existing methods which only adapt to some particular sparse matrices. In addition, our partitioning method can obtain dense blocks by analyzing […]
View View   Download Download (PDF)   
Hairong Wang
A multi-dimensional data model provides a good conceptual view of the data in data warehousing and On-Line Analytical Processing (OLAP). A typical representation of such a data model is as a multi-dimensional array which is well suited when the array is dense. If the array is sparse, i.e., has a few number of non-zero elements […]
View View   Download Download (PDF)   
O. Kaczmarek, C. Schmidt, P. Steinbrecher, Swagato Mukherjee, M. Wagner
The runtime of a Lattice QCD simulation is dominated by a small kernel, which calculates the product of a vector by a sparse matrix known as the "Dslash" operator. Therefore, this kernel is frequently optimized for various HPC architectures. In this contribution we compare the performance of the Intel Xeon Phi to current Kepler-based NVIDIA […]
View View   Download Download (PDF)   
Olav Aanes Fagerlund, Takeshi Kitayama, Gaku Hashimoto, Hiroshi Okuda
In the finite element method simulation we often deal with large sparse matrices. Sparse matrix-vector multiplication (SpMV) is of high importance for iterative solvers. During the solver stage, most of the time is in fact spent in the SpMV routine. The SpMV routine is highly memory-bound; the processor spends much time waiting for the needed […]
View View   Download Download (PDF)   
Hartwig Anzt, Stanimire Tomov, Piotr Luszczek, Ichitaro Yamazaki, Jack Dongarra, William Sawyer
Krylov subspace solvers are often the method of choice when solving sparse linear systems iteratively. At the same time, hardware accelerators such as graphics processing units (GPUs) continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a […]
View View   Download Download (PDF)   
Aditya Deshpande
In earlier times, computer systems had only a single core or processor. In these computers, the number of transistors on-chip (i.e. on the processor) doubled every two years and all applications enjoyed free speedup. Subsequently, with more and more transistors being packed on-chip, power consumption became an issue, frequency scaling reached its limits and industry […]
Hui Liu, Zhangxin Chen, Song Yu, Ben Hsieh, Lei Shao
In this paper, we develop, study and implement a restricted additive Schwarz (RAS) preconditioner for speedup of the solution of sparse linear systems on NVIDIA Tesla GPU. A novel algorithm for constructing this preconditioner is proposed. This algorithm involves two phases. In the first phase, the construction of the RAS preconditioner is transformed to an […]
View View   Download Download (PDF)   
Hui Liu, Zhangxin Chen, Bo Yang
Linear systems are required to solve in many scientific applications and the solution of these systems often dominates the total running time. In this paper, we introduce our work on developing parallel linear solvers and preconditioners for solving large sparse linear systems using NVIDIA GPUs. We develop a new sparse matrix-vector multiplication kernel and a […]
View View   Download Download (PDF)   
Vasileios Kolonias, George Goulas, Christos Gogos, Panayiotis Alefragis, Efthymios Housos
The examination timetabling problem belongs to the class of combinatorial optimization problems and is of great importance for every University. In this paper, a hybrid evolutionary algorithm running on a GPU is employed to solve the examination timetabling problem. The hybrid evolutionary algorithm proposed has a genetic algorithm component and a greedy steepest descent component. […]
View View   Download Download (PDF)   
Peter Benner, Ernesto Dufrechou, Pablo Ezzatti, Pablo Igounet, Enrique S. Quintana-Orti, Alfredo Remon
In this paper we present new hybrid CPU-GPU routines to accelerate the solution of linear systems, with band coefficient matrix, by off-loading the major part of the computations to the GPU and leveraging highly tuned implementations of the BLAS for the graphics processor. Our experiments with an nVidia S2070 GPU report speed-ups up to 6x […]
View View   Download Download (PDF)   
Page 1 of 1212345...10...Last »

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: