Joseph L. Greathouse, Mayank Daga
The performance of sparse matrix vector multiplication (SpMV) is important to computational scientists. Compressed sparse row (CSR) is the most frequently used format to store sparse matrices. However, CSR-based SpMV on graphics processing units (GPUs) has poor performance due to irregular memory access patterns, load imbalance, and reduced parallelism. This has led researchers to propose […]
View View   Download Download (PDF)   
Mayank Daga, Joseph L. Greathouse
Sparse matrix vector multiplication (SpMV) is an important linear algebra primitive. Recent research has focused on improving the performance of SpMV on GPUs when using compressed sparse row (CSR), the most frequently used matrix storage format on CPUs. Efficient CSR-based SpMV obviates the need for other GPU-specific storage formats, thereby saving runtime and storage overheads. […]
Linchuan Chen
Because of the bottleneck in the increase of clock frequency, multi-cores emerged as a way of improving the overall performance of CPUs. In the recent decade, many-cores begin to play a more and more important role in scientific computing. The highly cost-effective nature of many-cores makes them extremely suitable for data-intensive computations. Specifically, many-cores are […]
View View   Download Download (PDF)   
Davide Barbieri, Valeria Cardellini, Alessandro Fanfarillo, Salvatore Filippone
The multiplication of a sparse matrix by a dense vector is a centerpiece of scientific computing applications: it is the essential kernel for the solution of sparse linear systems and sparse eigenvalue problems by iterative methods. The efficient implementation of the sparse matrixvector multiplication is therefore crucial and has been the subject of an immense […]
Moritz Kreutzer, Jonas Thies, Melven Rohrig-Zollner, Andreas Pieper, Faisal Shahzad, Martin Galgon, Achim Basermann, Holger Fehske, Georg Hager, Gerhard Wellein
While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring "standard" as well as "accelerated" resources. Today, such resources are available as multicore processors, graphics processing units (GPUs), and other accelerators […]
Naveen Anand Subramaniam, Omkar Deshmukh, Vennila Megavannan, Dan Negrut
With the advent of parallel processing architectures and a steep increase in parallelism found among the recent applications, GPGPUs have gained attention with respect to their importance in the execution of these applications. In this document, we specifically analyze Sparse-Matrix Vector Multiplication(SPMV) across different architectures, libraries and matrix formats. The experimental platforms include but are […]
View View   Download Download (PDF)   
N. Sedaghati, A. Ashari, L. N. Pouchet, S. Parthasarathy, P. Sadayappan
Sparse matrix-vector multiplication (SpMV) is a widely used kernel in scientific applications as well as data analytics. Many GPU implementations of SpMV have been proposed, proposing different sparse matrix representations. However, no sparse matrix representation is consistently superior, and the best representation varies for sparse matrices with different sparsity patterns. In this paper we study […]
View View   Download Download (PDF)   
Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, Ryan R. Newton
Embedded languages are often compiled at application runtime; thus, embedded compile-time errors become application runtime errors. We argue that advanced type system features, such as GADTs and type families, play a crucial role in minimising such runtime errors. Specifically, a rigorous type discipline reduces runtime errors due to bugs in both embedded language applications and […]
Naser Sedaghati, Te Mu, Louis-Noel Pouchet, Srinivasan Parthasarathy, P. Sadayappan
Sparse matrix-vector multiplication (SpMV) is a core kernel in numerous applications, ranging from physics simulation and large-scale solvers to data analytics. Many GPU implementations of SpMV have been proposed, targeting several sparse representations and aiming at maximizing overall performance. No single sparse matrix representation is uniformly superior, and the best performing representation varies for sparse […]
View View   Download Download (PDF)   
Petr Pilar
We provide an efficient implementation of existing parameter synthesis techniques for stochastic systems modelled as continuous-time Markov chains (CTMCs). These techniques iteratively decompose the parameter space into its subspaces and approximate the satisfaction function that for any parameter values from the parameter space returns the probability of the formula being satisfied in the CTMC given […]
Weifeng Liu, Brian Vinter
Sparse matrix-vector multiplication (SpMV) is a central building block for scientific software and graph applications. Recently, heterogeneous processors composed of different types of cores attracted much attention because of their flexible core configuration and high energy efficiency. In this paper, we propose a compressed sparse row (CSR) format based SpMV algorithm utilizing both types of […]
E. Coronado-Barrientos, G. Indalecio, A. Garcia-Loureiro
The present work is an analysis of the performance of the AXPY, DOT and SpMV functions using OpenCL. The code was tested on the NVIDIA Tesla S2050 GPU and Intel Xeon Phi 3120A coprocessor. Due to nature of the AXPY function, only two versions were implemented, the routine to be executed by the CPU and […]
View View   Download Download (PDF)   
Page 1 of 1412345...10...Last »

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

338 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: