13506
Ang Li, Hammad Mazhar, Radu Serban, Dan Negrut
ViennaCL is a free open-source linear algebra library for computations on many-core architectures (GPUs, MIC) and multi-core CPUs. The library is written in C++ and supports CUDA, OpenCL, and OpenMP. In addition to core functionality and many other features including BLAS level 1-3 support and iterative solvers, the latest release family ViennaCL 1.6.x provides fast […]
View View   Download Download (PDF)   
Arash Ashari
Sparse Matrix-Vector multiplication (SpMV) is one of the key operations in linear algebra. Overcoming thread divergence, load imbalance and un-coalesced and indirect memory access due to sparsity and irregularity are challenges to optimizing SpMV on GPUs. This dissertation develops solutions that address these challenges effectively. The first part of this dissertation focuses on a new […]
View View   Download Download (PDF)   
Hammad Mazhar, Dan Negrut
This technical report provides performance numbers for several benchmark problems running on several different hardware platforms. The goal of this report is twofold. First, it helps us better understand how the performance of OpenCL changes on different platforms. Second, it provides a OpenCL-OpenMP comparison for a sparse matrix-vector multiplication operation. The VexCL library will be […]
View View   Download Download (PDF)   
Emanuel H. Rubensson, Elias Rudberg
We present a library for parallel block-sparse matrix-matrix multiplication on distributed memory clusters. The library is based on the Chunks and Tasks programming model [Parallel Comput. 40, 328 (2014)]. Acting as matrix library developers, using this model we do not have to explicitly deal with distribution of work and data or communication between computational nodes […]
View View   Download Download (PDF)   
Jonathan Wong, Ellen Kuhl, Eric Darve
Recently, graphics processors (GPUs) have been increasingly leveraged in a variety of scientific computing applications. However, architectural differences between CPUs and GPUs necessitate the development of algorithms that take advantage of GPU hardware. As sparse matrix vector multiplication (SPMV) operations are commonly used in finite element analysis, a new SPMV algorithm and several variations are […]
View View   Download Download (PDF)   
Michael Driscoll
We present an interpretation of subdivision surface evaluation in the language of linear algebra. Specifically, the vector of surface points can be computed by left-multiplying the vector of control points by a sparse subdivision matrix. This "matrix-driven" interpretation applies to any level of subdivision, holds for many common subdivision schemes (including Catmull-Clark and Loop), supports […]
Wangdong Yang, Kenli Li, Zeyao Mo, Keqin Li
This paper presents a sparse matrix partitioning strategy to improve the performance of SpMV on GPUs and multicore CPUs. This method has wide adaptability for different types of sparse matrices, and is different from existing methods which only adapt to some particular sparse matrices. In addition, our partitioning method can obtain dense blocks by analyzing […]
View View   Download Download (PDF)   
Hairong Wang
A multi-dimensional data model provides a good conceptual view of the data in data warehousing and On-Line Analytical Processing (OLAP). A typical representation of such a data model is as a multi-dimensional array which is well suited when the array is dense. If the array is sparse, i.e., has a few number of non-zero elements […]
View View   Download Download (PDF)   
O. Kaczmarek, C. Schmidt, P. Steinbrecher, Swagato Mukherjee, M. Wagner
The runtime of a Lattice QCD simulation is dominated by a small kernel, which calculates the product of a vector by a sparse matrix known as the "Dslash" operator. Therefore, this kernel is frequently optimized for various HPC architectures. In this contribution we compare the performance of the Intel Xeon Phi to current Kepler-based NVIDIA […]
View View   Download Download (PDF)   
Olav Aanes Fagerlund, Takeshi Kitayama, Gaku Hashimoto, Hiroshi Okuda
In the finite element method simulation we often deal with large sparse matrices. Sparse matrix-vector multiplication (SpMV) is of high importance for iterative solvers. During the solver stage, most of the time is in fact spent in the SpMV routine. The SpMV routine is highly memory-bound; the processor spends much time waiting for the needed […]
View View   Download Download (PDF)   
Hartwig Anzt, Stanimire Tomov, Piotr Luszczek, Ichitaro Yamazaki, Jack Dongarra, William Sawyer
Krylov subspace solvers are often the method of choice when solving sparse linear systems iteratively. At the same time, hardware accelerators such as graphics processing units (GPUs) continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a […]
View View   Download Download (PDF)   
Aditya Deshpande
In earlier times, computer systems had only a single core or processor. In these computers, the number of transistors on-chip (i.e. on the processor) doubled every two years and all applications enjoyed free speedup. Subsequently, with more and more transistors being packed on-chip, power consumption became an issue, frequency scaling reached its limits and industry […]
Page 1 of 1212345...10...Last »

* * *

* * *

Like us on Facebook

HGPU group

218 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1401 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: