Charalampos S. Kouzinopoulos, Panagiotis D. Michailidis, Konstantinos G. Margaritis
Multiple pattern matching algorithms are used to locate the occurrences of patterns from a finite pattern set in a large input string. Aho-Corasick, Set Horspool, Set Backward Oracle Matching, Wu-Manber and SOG, five of the most well known algorithms for multiple matching require an increased computing power, particularly in cases where large-size datasets must be […]
View View   Download Download (PDF)   
Vajira Thambawita, Roshan Ragel, Dhammika Elkaduwe
String matching is an important part in today’s computer applications and Aho-Corasick algorithm is one of the main string matching algorithms used to accomplish this. This paper discusses that when can the GPUs be used for string matching applications using the Aho-Corasick algorithm as a benchmark. We have to identify the best unit to run […]
View View   Download Download (PDF)   
Rahul Shirude, Valmik B. Nikam, B.B. Meshram
Bioinformatics is the field of science which applies computer science and information technology to the problems of biological science. One of the most useful applications of bioinformatics is sequence analysis. Sequence analysis, which is the process of subjecting a DNA, RNA to any wide range of analytical approaches, involves methodologies like sequence alignment and searches […]
View View   Download Download (PDF)   
Nagaveni V, G T Raju
The main aim of string matching algorithm is to locate the appearance of a specific pattern in an array of larger size text. String matching algorithms has been used in many applications such as DNA analysis. This report introduces a new approach of string matching algorithm to detect the occurrence of several gene patterns in […]
View View   Download Download (PDF)   
Cary Yang, Kevin Zhang
In this paper, we explore approaches to parallelizing the edit distance problem and the related approximate string matching problem. The edit distance is a measure of the number of individual character insertions, deletions, and substitutions requried to transform one string into another string. In the canonical dynamic programming solution to the edit distance, a chain […]
View View   Download Download (PDF)   
Sanguthevar Rajasekaran, Lance Fiondella, Mohamed Ahmed, Reda A. Ammar
Every area of science and engineering today has to process voluminous data sets. Using exact, or even approximate, algorithms to solve intractable problems in critical areas, such as computational biology, takes time that is exponential in some of the underlying parameters. Parallel computing addresses this issue and has become affordable with the advent of multicore […]
View View   Download Download (PDF)   
Adnan Ozsoy, Martin Swany, Arun Chauhan
In this paper, we present an algorithm and provide design improvements needed to port the serial Lempel-Ziv-Storer-Szymanski (LZSS), lossless data compression algorithm, to a parallelized version suitable for general purpose graphic processor units (GPGPU), specifically for NVIDIA’s CUDA Framework. The two main stages of the algorithm, substring matching and encoding, are studied in detail to […]
View View   Download Download (PDF)   
Kazumasa Ikeuchi, Janaka Wijekoon, Shinichi Ishida, Hiroaki Nishi
Service-oriented router (SoR) is a new router architecture for providing rich services to Internet users by utilizing useful information extracted from network traffic. In SoR, stream reconstruction and selection is a fundamental process for providing the services in the application layer. After real-time reconstruction of stream data, SoR used a software character string analyzer to […]
View View   Download Download (PDF)   
Charalampos S. Kouzinopoulos
String matching is a fundamental problem in the area of scientific computing. When two different one-dimensional strings are taken as an input, the so called "input string" and the so called "pattern", the string matching problem involves the location of all the positions in the input string where the pattern appears. As there has been […]
View View   Download Download (PDF)   
Hirohito Sasakawa, Hiroki Arimura
In this paper, we propose fast string matching system using GPU for large scale string matching. The key of our proposed system is the use of bit-parallel pattern matching approach for compact NFA representation and fast simulation of NFA transition on GPU. In the experiments, we show the usefulness of our proposed pattern matching system.
View View   Download Download (PDF)   
Saima Haseeb, Mahak Motwani, Amit Saxena
With the rapid growth of Internet, E-mail, with its convenient and efficient characteristics, has become an important means of communication in people’s life. It reduces the cost of communication. It comes with Spam. Spam emails, also known as "junk e-mails", are unsolicited one’s sent in bulk with hidden or forged identity of the sender, address, […]
View View   Download Download (PDF)   
Weibin Sun, Robert Ricci
We introduce Snap, a framework for packet processing that outperforms traditional software routers by exploiting the parallelism available on modern GPUs. While obtaining high performance, it remains extremely flexible, with packet-processing tasks implemented as simple modular elements that are composed to build fully functional routers and switches. Snap is based on the Click modular router, […]
Page 1 of 3123

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: