David Defour, Eric Petit
Due to many factors such as, high transistor density, high frequency, and low voltage, today’s processors are more than ever subject to hardware failures. These errors have various impacts depending on the location of the error and the type of processor. Because of the hierarchical structure of the compute units and work scheduling, the hardware […]
View View   Download Download (PDF)   
Mahesh Nanjundappa, Hiren D. Patel, Bijoy A. Jose, Sandeep K. Shukla
The main objective of this paper is to speed up the simulation performance of SystemC designs at the RTL abstraction level by exploiting the high degree of parallelism afforded by today’s general purpose graphics processors (GPGPUs). Our approach parallelizes SystemC’s discrete-event simulation (DES) on GPGPUs by transforming the model of computation of DES into a […]
View View   Download Download (PDF)   
Sylvain Collange, David Defour, Arnaud Tisserand
GPUs are now considered as serious challengers for high-performance computing solutions. They have power consumptions up to 300 W. This may lead to power supply and thermal dissipation problems in computing centers. In this article we investigate, using measurements, how and where modern GPUs are using energy during various computations in a CUDA environment.
View View   Download Download (PDF)   
David J. Hardy, John E. Stone, Klaus Schulten
Physical and engineering practicalities involved in microprocessor design have resulted in flat performance growth for traditional single-core microprocessors. The urgent need for continuing increases in the performance of scientific applications requires the use of many-core processors and accelerators such as graphics processing units (GPUs). This paper discusses GPU acceleration of the multilevel summation method for […]
View View   Download Download (PDF)   

* * *

* * *

Follow us on Twitter

HGPU group

1665 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: