14006
C. F. Janssen, N. Koliha, T. Rung
This paper presents a fast surface voxelization technique for the mapping of tessellated triangular surface meshes to uniform and structured grids that provide a basis for CFD simulations with the lattice Boltzmann method (LBM). The core algorithm is optimized for massively parallel execution on graphics processing units (GPUs) and is based on a unique dissection […]
View View   Download Download (PDF)   
Jonas Martinez, Frederic Claux, Sylvain Lefebvre
In this paper, we propose to extend high quality Centroidal Voronoi Tessellation (CVT) remeshing techniques to the case of surfaces which are not defined by triangle meshes, such as implicit surfaces. Our key observation is that rasterization routines are usually available to visualize these alternative representations, most often as OpenGL shaders efficiently producing surface samples […]
View View   Download Download (PDF)   
Thomas Weber
The adaptive subdivision step for surface tessellation is a key component of the Reyes rendering pipeline. While this operation has been successfully parallelized for execution on the GPU using a breadth-first traversal, the resulting implementations are limited by their high worst-case memory consumption and high global memory bandwidth utilization. This report proposes an alternate strategy […]
Markus Rapp
An approach is represented to render hair in real-time by using a small number of guide strands to generate interpolated hairs on the graphics processing unit (GPU). Hair interpolation methods are based on a single guide strand or on multiple guide strands. Each hair strand is composed by segments, which can be further subdivided to […]
View View   Download Download (PDF)   
Vincent Boerjan
SMARAD is the Smart and Novel Radios research unit at Aalto University in Helsinki. In the context of their smart radio research the area of influence of existing television transmitters is important data for the placement of experimental transmitters. Currently these areas are calculated with a regular Voronoi tessellation ignoring variation in transmitter characteristics. This […]
View View   Download Download (PDF)   
Henry Schafer, Benjamin Keinert, Matthias Niessner, Christoph Buchenau, Michael Guthe, Marc Stamminger
We present a novel real-time approach for fine-scale surface deformations resulting from collisions. Deformations are represented by a high-resolution displacement function. When two objects collide, these offsets are updated directly on the GPU based on a dynamically generated binary voxelization of the overlap region. Consequently, we can handle collisions with arbitrary animated geometry. Our approach […]
View View   Download Download (PDF)   
Henry Schafer, Matthias Niessner, Benjamin Keinert, Marc Stamminger, Charles Loop
For a long time, GPUs have primarily been optimized to render more and more triangles with increasingly flexible shading. However, scene data itself has typically been generated on the CPU and then uploaded to GPU memory. Therefore, widely used techniques that generate geometry at render time on demand for the rendering of smooth and displaced […]
View View   Download Download (PDF)   
Xiang Ying, Xiaoning Wang, Ying He
This paper presents the Saddle Vertex Graph (SVG), a novel solution to the discrete geodesic problem. The SVG is a sparse undirected graph that encodes complete geodesic distance information: a geodesic path on the mesh is equivalent to a shortest path on the SVG, which can be solved efficiently using the shortest path algorithm (e.g., […]
View View   Download Download (PDF)   
Alexey Boreskov, Evgeniy Shikin
Computer Graphics: From Pixels to Programmable Graphics Hardware explores all major areas of modern computer graphics, starting from basic mathematics and algorithms and concluding with OpenGL and real-time graphics. It gives students a firm foundation in today’s high-performance graphics. UP-TO-DATE TECHNIQUES, ALGORITHMS, AND API: The book includes mathematical background on vectors and matrices as well […]
View View   Download Download (PDF)   
Romain Maffina
The goal of the project is to develop a triangle-triangle collision algorithm. A reference triangle is given as well as a variably-sized array of many other triangles. The algorithm must check if one triangle intersects with the reference triangle. That operation has to be led for each "non-reference" triangle with the reference triangle. If one […]
View View   Download Download (PDF)   
Albert Cervin
In this master thesis report, a scheme for adaptive hardware tessellation is presented. The scheme uses an offline processing approach where a height map is analyzed in terms of curvature and the result is stored in a resource called density map. This density map is then bound as a resource to the hardware tessellation stage […]
View View   Download Download (PDF)   
Yun Fei, Wenping Wang, Bin Wang
Nonlinear optimization is at the heart of many algorithms in engineering. Recently, due to the rise of general purpose graphics processing unit (GPGPU), it is promising to investigate the performance improvement of optimization methods after parallelized. While much has been done for simple optimization methods such as conjugate gradient, due to the strong dependencies contained, […]
Page 1 of 212

* * *

* * *

Follow us on Twitter

HGPU group

1512 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

262 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: