13002
Vincent Boerjan
SMARAD is the Smart and Novel Radios research unit at Aalto University in Helsinki. In the context of their smart radio research the area of influence of existing television transmitters is important data for the placement of experimental transmitters. Currently these areas are calculated with a regular Voronoi tessellation ignoring variation in transmitter characteristics. This […]
View View   Download Download (PDF)   
Henry Schafer, Benjamin Keinert, Matthias Niessner, Christoph Buchenau, Michael Guthe, Marc Stamminger
We present a novel real-time approach for fine-scale surface deformations resulting from collisions. Deformations are represented by a high-resolution displacement function. When two objects collide, these offsets are updated directly on the GPU based on a dynamically generated binary voxelization of the overlap region. Consequently, we can handle collisions with arbitrary animated geometry. Our approach […]
View View   Download Download (PDF)   
Henry Schafer, Matthias Niessner, Benjamin Keinert, Marc Stamminger, Charles Loop
For a long time, GPUs have primarily been optimized to render more and more triangles with increasingly flexible shading. However, scene data itself has typically been generated on the CPU and then uploaded to GPU memory. Therefore, widely used techniques that generate geometry at render time on demand for the rendering of smooth and displaced […]
View View   Download Download (PDF)   
Xiang Ying, Xiaoning Wang, Ying He
This paper presents the Saddle Vertex Graph (SVG), a novel solution to the discrete geodesic problem. The SVG is a sparse undirected graph that encodes complete geodesic distance information: a geodesic path on the mesh is equivalent to a shortest path on the SVG, which can be solved efficiently using the shortest path algorithm (e.g., […]
View View   Download Download (PDF)   
Alexey Boreskov, Evgeniy Shikin
Computer Graphics: From Pixels to Programmable Graphics Hardware explores all major areas of modern computer graphics, starting from basic mathematics and algorithms and concluding with OpenGL and real-time graphics. It gives students a firm foundation in today’s high-performance graphics. UP-TO-DATE TECHNIQUES, ALGORITHMS, AND API: The book includes mathematical background on vectors and matrices as well […]
View View   Download Download (PDF)   
Romain Maffina
The goal of the project is to develop a triangle-triangle collision algorithm. A reference triangle is given as well as a variably-sized array of many other triangles. The algorithm must check if one triangle intersects with the reference triangle. That operation has to be led for each "non-reference" triangle with the reference triangle. If one […]
View View   Download Download (PDF)   
Albert Cervin
In this master thesis report, a scheme for adaptive hardware tessellation is presented. The scheme uses an offline processing approach where a height map is analyzed in terms of curvature and the result is stored in a resource called density map. This density map is then bound as a resource to the hardware tessellation stage […]
View View   Download Download (PDF)   
Yun Fei, Wenping Wang, Bin Wang
Nonlinear optimization is at the heart of many algorithms in engineering. Recently, due to the rise of general purpose graphics processing unit (GPGPU), it is promising to investigate the performance improvement of optimization methods after parallelized. While much has been done for simple optimization methods such as conjugate gradient, due to the strong dependencies contained, […]
Ralf Kaehler, Oliver Hahn, Tom Abel
In the last decades cosmological N-body dark matter simulations have enabled ab initio studies of the formation of structure in the Universe. Gravity amplified small density fluctuations generated shortly after the Big Bang, leading to the formation of galaxies in the cosmic web. These calculations have led to a growing demand for methods to analyze […]
View View   Download Download (PDF)   
Liang Shuai, Xiaohu Guo, Miao Jin
Periodic centroidal Voronoi tessellation (CVT) in hyperbolic space provides a nice theoretical framework for computing the constrained CVT on high-genus (genus > 1) surfaces. This paper addresses two computational issues related to such hyperbolic CVT framework: (1) efficient reduction of unnecessary site copies in neighbor domains on the universal covering space, based on two special […]
View View   Download Download (PDF)   
Adrien Bernhardt, Andre Maximo, Luiz Velho, Houssam Hnaidi, Marie-Paule Cani
Motivated by the importance of having real-time feedback in sketch-based modeling tools, we present a framework for terrain edition capable of generating and displaying complex and high-resolution terrains. Our system is efficient and fast enough to allow the user to see the terrain morphing at the same time the drawing editing occurs. We have two […]
View View   Download Download (PDF)   
M. Adil Yalcin, Kenneth Weiss, Leila De Floriani
We present parallel algorithms for processing, extracting and rendering adaptively sampled regular terrain datasets represented as a multiresolution model defined by a super-square-based diamond hierarchy. This model represents a terrain as a nested triangle mesh generated through a series of longest edge bisections and encoded in an implicit hierarchical structure, which clusters triangles into diamonds […]
View View   Download Download (PDF)   
Page 1 of 212

* * *

* * *

Like us on Facebook

HGPU group

172 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1283 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: