Shicong Liu, Hongtao Lu
We introduce a novel dictionary optimization method for high-dimensional vector quantization employed in approximate nearest neighbor (ANN) search. Vector quantization methods first seek a series of dictionaries, then approximate each vector by a sum of elements selected from these dictionaries. An optimal series of dictionaries should be mutually independent, and each dictionary should generate a […]
View View   Download Download (PDF)   
P. Egert, V. Havran
Bidirectional Texture Function (BTF) as an effective visual fidelity representation of surface appearance is becoming more and more widely used. In this paper we report on contributions to BTF data compression for multi-level vector quantization. We describe novel decompositions that improve the compression ratio by 15% in comparison with the original method, without loss of […]
View View   Download Download (PDF)   
John Ashley, Amy J. Braverman
Multi-trial sampled K-means performance and scalability is studied as a stepping stone towards a Graphical Processing Unit implementation of Entropy Constrained Vector Quantization for interactive data compression. Basic parallelization strategies and data layout impacts are explored with K-means. The K-means implementation is extended to Entropy Constrained Vector Quantization, and additional tuning specific to the anticipated […]
View View   Download Download (PDF)   
Rita Silva, Telmo Marques, Jorge Desirat, Patricio Domingues
Many-Core computing is an actual growing concept that allows the true parallelization of computational tasks. In the particular case of this paper, the vector quantization algorithm was adapted to the many-core concept with the objective of compressing images encoded in the PGM format. For that, a given sequential implementation of the algorithm was optimized and […]
View View   Download Download (PDF)   
Roland Fraedrich, Jens Schneider, Rudiger Westermann
In this paper we investigate scalability limitations in the visualization of large-scale particle-based cosmological simulations, and we present methods to reduce these limitations on current PC architectures. To minimize the amount of data to be streamed from disk to the graphics subsystem, we propose a visually continuous level-of-detail (LOD) particle representation based on a hierarchical […]
View View   Download Download (PDF)   
Yi Xiao, Chi Leung, Tze-Yui Ho, Ping-Man Lam
Vector quantization (VQ) is an effective technique applicable in a wide range of areas, such as image compression and pattern recognition. The most time-consuming procedure of VQ is codebook training, and two of the frequently used training algorithms are LBG and self-organizing map (SOM). Nowadays, desktop computers are usually equipped with programmable graphics processing units […]

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

338 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: