Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder
Department of Physics, McGill University, 3600 University St, Montreal, Canada
arXiv:1406.2288 [astro-ph.IM], (9 Jun 2014)
@{,
}
A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping Experiment) is currently being commissioned at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical interferometer designed to measure the large scale neutral hydrogen power spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used to measure the baryon acoustic oscillation (BAO) scale across this poorly probed redshift range where dark energy becomes a significant contributor to the evolution of the Universe. The instrument revives the cylinder design in radio astronomy with a wide field survey as a primary goal. Modern low-noise amplifiers and digital processing remove the necessity for the analog beamforming that characterized previous designs. The Pathfinder consists of two cylinders 37m long by 20m wide oriented north-south for a total collecting area of 1,500 square meters. The cylinders are stationary with no moving parts, and form a transit instrument with an instantaneous field of view of ~100 degrees by 1-2 degrees. Each CHIME Pathfinder cylinder has a feedline with 64 dual polarization feeds placed every ~30cm which Nyquist sample the north-south sky over much of the frequency band. The signals from each dual-polarization feed are independently amplified, filtered to 400-800 MHz, and directly sampled at 800 MSps using 8 bits. The correlator is an FX design, where the Fourier transform channelization is performed in FPGAs, which are interfaced to a set of GPUs that compute the correlation matrix. The CHIME Pathfinder is a 1/10th scale prototype version of CHIME and is designed to detect the BAO feature and constrain the distance-redshift relation.
June 11, 2014 by hgpu