12736

Searching for a counterexample of Kurepa’s Conjecture

Vladica Andrejic, Milos Tatarevic
Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
arXiv:1409.0800 [math.NT], (2 Sep 2014)
BibTeX

Download Download (PDF)   View View   Source Source   

2310

views

Kurepa’s conjecture states that there is no odd prime p which divides !p=0!+1!+…+(p-1)!. We search for a counterexample of this conjecture for all p<10^10. We introduce new optimization techniques and perform the computation using graphics processing units (GPUs). Additionally, we consider the generalized Kurepa’s left factorial given as !kn=(0!)k+(1!)k+…+((n-1)!)k and show that for all integers 1<k<100 there exists an odd prime p such that p|!^kp.
Rating: 2.5/5. From 2 votes.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org