A Kinetic Vlasov Model for Plasma Simulation Using Discontinuous Galerkin Method on Many-Core Architectures

Noah Reddell
University of Washington
University of Washington, 2016


   title={A Kinetic Vlasov Model for Plasma Simulation Using Discontinuous Galerkin Method on Many-Core Architectures},

   author={Reddell, Noah},


   school={University of Washington}


Download Download (PDF)   View View   Source Source   



Advances are reported in the three pillars of computational science achieving a new capability for understanding dynamic plasma phenomena outside of local thermodynamic equilibrium. A continuum kinetic model for plasma based on the Vlasov-Maxwell system for multiple particle species is developed. Consideration is added for boundary conditions in a truncated velocity domain and supporting wall interactions. A scheme to scale the velocity domain for multiple particle species with different temperatures and particle mass while sharing one computational mesh is described. A method for assessing the degree to which the kinetic solution differs from a Maxwell-Boltzmann distribution is introduced and tested on a thoroughly studied test case. The discontinuous Galerkin numerical method is extended for efficient solution of hyperbolic conservation laws in five or more particle phase-space dimensions using tensor-product hypercube elements with arbitrary polynomial order. A scheme for velocity moment integration is integrated as required for coupling between the plasma species and electromagnetic waves. A new high performance simulation code WARPM is developed to efficiently implement the model and numerical method on emerging many-core supercomputing architectures. WARPM uses the OpenCL programming model for computational kernels and task parallelism to overlap computation with communication. WARPM single-node performance and parallel scaling efficiency are analyzed with bottlenecks identified guiding future directions for the implementation. The plasma modeling capability is validated against physical problems with analytic solutions and well established benchmark problems.
No votes yet.
Please wait...

Recent source codes

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: