TEDI: efficient shortest path query answering on graphs

Fang Wei
Computer Science Department, University of Freiburg, Freiburg, Germany
In Proceedings of the 2010 international conference on Management of data (2010), pp. 99-110


   title={TEDI: efficient shortest path query answering on graphs},

   author={Wei, F.},

   booktitle={Proceedings of the 2010 international conference on Management of data},





Download Download (PDF)   View View   Source Source   



Efficient shortest path query answering in large graphs is enjoying a growing number of applications, such as ranked keyword search in databases, social networks, ontology reasoning and bioinformatics. A shortest path query on a graph finds the shortest path for the given source and target vertices in the graph. Current techniques for efficient evaluation of such queries are based on the pre-computation of compressed Breadth First Search trees of the graph. However, they suffer from drawbacks of scalability. To address these problems, we propose TEDI, an indexing and query processing scheme for the shortest path query answering. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node (a.k.a. bag) contains more than one vertex from the graph. The shortest paths are stored in such bags and these local paths together with the tree are the components of the index of the graph. Based on this index, a bottom-up operation can be executed to find the shortest path for any given source and target vertices. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2020 hgpu.org

All rights belong to the respective authors

Contact us: