9087

Warp Size Impact in GPUs: Large or Small?

Ahmad Lashgar, Amirali Baniasadi, Ahmad Khonsari
School of ECE, University of Tehran
Sixth Workshop on General Purpose Processing Using GPUs (GPGPU6), 2013

@article{lashgar2013warp,

   title={Warp Size Impact in GPUs: Large or Small?},

   author={Lashgar, Ahmad and Baniasadi, Amirali and Khonsari, Ahmad},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

2212

views

There are a number of design decisions that impact a GPU’s performance. Among such decisions deciding the right warp size can deeply influence the rest of the design. Small warps reduce the performance penalty associated with branch divergence at the expense of a reduction in memory coalescing. Large warps enhance memory coalescing significantly but also increase branch divergence. This leaves designers with two choices: use small warps and invest in finding new solutions to enhance coalescing or use large warps and address branch divergence employing effective control-flow solutions. In this work our goal is to investigate the answer to this question. We analyze warp size impact on memory coalescing and branch divergence. We use our findings to study two machines: a GPU using small warps but equipped with excellent memory coalescing (SW+) and a GPU using large warps but employing an MIMD engine immune from control-flow costs (LW+). Our evaluations show that building coalescing-enhanced small warp GPUs is a better approach compared to pursuing a controlflow enhanced large warp GPU.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: