10614

Data-parallel Acceleration of PARSEC Black-Scholes Benchmark

August Andren, Patrik Hagernas
KTH, School of Information and Communication Technology (ICT)
KTH, 2013
@article{andren2013data,

   title={Data-parallel Acceleration of PARSEC Black-Scholes Benchmark},

   author={Andr{‘e}n, August and Hagern{"a}s, Patrik},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

327

views

The way programmers has been relying on processor improvements to gain speedup in their applications is no longer applicable in the same fashion. Programmers usually have to parallelize their code to utilize the CPU cores in the system to gain a significant speedup. To accelerate parallel applications furthermore there are a couple of techniques available. One technique is to vectorize some of the parallel code. Another technique is to move parts of the parallel code to the GPGPU and utilize this very good multi-threading unit of the system. The main focus of this report is to accelerate the data-parallel workload Black-Scholes of PARSEC benchmark suite. We are going to compare three accelerations of this workload, using vector instructions in the CPU, using the GPGPU and using a combination of them both. The two fundamental aspects are to look at the speedup and determine which technique requires more or less programming effort. To accelerate with vectorization in the CPU we use SSE & AVX techniques and to accelerate the workload in the GPGPU we use OpenACC.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

128 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1194 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: