1177

GPUTeraSort: high performance graphics co-processor sorting for large database management

Naga Govindaraju, Jim Gray, Ritesh Kumar, Dinesh Manocha
University of North Carolina at Chapel Hill
In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international conference on Management of data (2006), pp. 325-336.
@conference{govindaraju2006gputerasort,

   title={GPUTeraSort: high performance graphics co-processor sorting for large database management},

   author={Govindaraju, N. and Gray, J. and Kumar, R. and Manocha, D.},

   booktitle={Proceedings of the 2006 ACM SIGMOD international conference on Management of data},

   pages={325–336},

   isbn={1595934340},

   year={2006},

   organization={ACM}

}

Download Download (PDF)   View View   Source Source   

458

views

We present a novel external sorting algorithm using graphics processors (GPUs) on large databases composed of billions of records and wide keys. Our algorithm uses the data parallelism within a GPU along with task parallelism by scheduling some of the memory-intensive and compute-intensive threads on the GPU. Our new sorting architecture provides multiple memory interfaces on the same PC — a fast and dedicated memory interface on the GPU along with the main memory interface for CPU computations. As a result, we achieve higher memory bandwidth as compared to CPU-based algorithms running on commodity PCs. Our approach takes into account the limited communication bandwidth between the CPU and the GPU, and reduces the data communication between the two processors. Our algorithm also improves the performance of disk transfers and achieves close to peak I/O performance. We have tested the performance of our algorithm on the SortBenchmark and applied it to large databases composed of a few hundred Gigabytes of data. Our results on a 3 GHz Pentium IV PC with $300 NVIDIA 7800 GT GPU indicate a significant performance improvement over optimized CPU-based algorithms on high-end PCs with 3.6 GHz Dual Xeon processors. Our implementation is able to outperform the current high-end PennySort benchmark and results in a higher performance to price ratio. Overall, our results indicate that using a GPU as a co-processor can significantly improve the performance of sorting algorithms on large databases.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

184 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1311 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: