Particle-in-Cell Laser-Plasma Simulation on Xeon Phi Coprocessors

I.A. Surmin, S.I. Bastrakov, E.S. Efimenko, A.A. Gonoskov, A.V. Korzhimanov, I.B. Meyerov
Lobachevsky State University of Nizhni Novgorod, Building 2, 23 Gagarina Avenue, Nizhni Novgorod, Russia 603950
arXiv:1505.07271 [physics.comp-ph], (27 May 2015)

   title={Particle-in-Cell Laser-Plasma Simulation on Xeon Phi Coprocessors},

   author={Surmin, I.A. and Bastrakov, S.I. and Efimenko, E.S. and Gonoskov, A.A. and Korzhimanov, A.V. and Meyerov, I.B.},






Download Download (PDF)   View View   Source Source   



This paper concerns development of a high-performance implementation of the Particle-in-Cell method for plasma simulation on Intel Xeon Phi coprocessors. We discuss suitability of the method for Xeon Phi architecture and present our experience of porting and optimization of the existing parallel Particle-in-Cell code PICADOR. Direct porting with no code modification gives performance on Xeon Phi close to 8-core CPU on a benchmark problem with 50 particles per cell. We demonstrate step-by-step application of optimization techniques such as improving data locality, enhancing parallelization efficiency and vectorization that leads to 3.75 x speedup on CPU and 7.5 x on Xeon Phi. The optimized version achieves 18.8 ns per particle update on Intel Xeon E5-2660 CPU and 9.3 ns per particle update on Intel Xeon Phi 5110P. On a real problem of laser ion acceleration in targets with surface grating that requires a large number of macroparticles per cell the speedup of Xeon Phi compared to CPU is 1.6 x.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477416023
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477416023
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => pK75AuW4pmAzXvS5jciZo7uapYg=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2034 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: