16385

Co-design of a particle-in-cell plasma simulation code for Intel Xeon Phi: a first look at Knights Landing

Igor Surmin, Sergey Bastrakov, Zakhar Matveev, Evgeny Efimenko, Arkady Gonoskov, Iosif Meyerov
Lobachevsky State University of Nizhni Novgorod, Russia
arXiv:1608.01009 [cs.DC], (2 Aug 2016)
@article{surmin2016codesign,

   title={Co-design of a particle-in-cell plasma simulation code for Intel Xeon Phi: a first look at Knights Landing},

   author={Surmin, Igor and Bastrakov, Sergey and Matveev, Zakhar and Efimenko, Evgeny and Gonoskov, Arkady and Meyerov, Iosif},

   year={2016},

   month={aug},

   archivePrefix={"arXiv"},

   primaryClass={cs.DC}

}

Download Download (PDF)   View View   Source Source   

189

views

Three dimensional particle-in-cell laser-plasma simulation is an important area of computational physics. Solving state-of-the-art problems requires large-scale simulation on a supercomputer using specialized codes. A growing demand in computational resources inspires research in improving efficiency and co-design for supercomputers based on many-core architectures. This paper presents first performance results of the particle-in-cell plasma simulation code PICADOR on the recently introduced Knights Landing generation of Intel Xeon Phi. A straightforward rebuilding of the code yields a 2.43 x speedup compared to the previous Knights Corner generation. Further code optimization results in an additional 1.89 x speedup. The optimization performed is beneficial not only for Knights Landing, but also for high-end CPUs and Knights Corner. The optimized version achieves 100 GFLOPS double precision performance on a Knights Landing device with the speedups of 2.35 x compared to a 14-core Haswell CPU and 3.47 x compared to a 61-core Knights Corner Xeon Phi.
VN:F [1.9.22_1171]
Rating: 3.0/5 (2 votes cast)
Co-design of a particle-in-cell plasma simulation code for Intel Xeon Phi: a first look at Knights Landing, 3.0 out of 5 based on 2 ratings

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1475051819
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1475051819
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => fIkEn/rmqGCTl1jca70/SskocmQ=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1999 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: