16421

OpenCL + OpenSHMEM Hybrid Programming Model for the Adapteva Epiphany Architecture

David Richie, James Ross
Brown Deer Technology, Forest Hill, MD 21050, USA
arXiv:1608.03549 [cs.DC], (11 Aug 2016)
@article{richie2016opencl,

   title={OpenCL + OpenSHMEM Hybrid Programming Model for the Adapteva Epiphany Architecture},

   author={Richie, David and Ross, James},

   year={2016},

   month={aug},

   archivePrefix={"arXiv"},

   primaryClass={cs.DC}

}

There is interest in exploring hybrid OpenSHMEM + X programming models to extend the applicability of the OpenSHMEM interface to more hardware architectures. We present a hybrid OpenCL + OpenSHMEM programming model for device-level programming for architectures like the Adapteva Epiphany many-core RISC array processor. The Epiphany architecture comprises a 2D array of low-power RISC cores with minimal uncore functionality connected by a 2D mesh Network-on-Chip (NoC). The Epiphany architecture offers high computational energy efficiency for integer and floating point calculations as well as parallel scalability. The Epiphany-III is available as a coprocessor in platforms that also utilize an ARM CPU host. OpenCL provides good functionality for supporting a co-design programming model in which the host CPU offloads parallel work to a coprocessor. However, the OpenCL memory model is inconsistent with the Epiphany memory architecture and lacks support for inter-core communication. We propose a hybrid programming model in which OpenSHMEM provides a better solution by replacing the non-standard OpenCL extensions introduced to achieve high performance with the Epiphany architecture. We demonstrate the proposed programming model for matrix-matrix multiplication based on Cannon’s algorithm showing that the hybrid model addresses the deficiencies of using OpenCL alone to achieve good benchmark performance.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1474941346
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1474941346
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => g8WluUye4ey57jDWlWHpQ7Zb79I=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1997 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: