8209

Reducing thread divergence in a GPU-accelerated branch-and-bound algorithm

Imen Chakroun, Mohand Mezmaz, Nouredine Melab, Ahcene Bendjoudi
INRIA – CNRS : UMR8022 – Universite Lille 1 – Sciences et Technologies
hal-00731859, 2012
@article{chakroun:hal-00731859,

   hal_id={hal-00731859},

   url={http://hal.inria.fr/hal-00731859},

   title={Reducing thread divergence in a GPU-accelerated branch-and-bound algorithm},

   author={Chakroun, Imen and Mezmaz, Mohand and Melab, Nouredine and Bendjoudi, Ahc{‘e}ne},

   language={Anglais},

   affiliation={DOLPHIN – INRIA Lille – Nord Europe , Institut de Math{‘e}matiques [Mons] , Laboratoire d’Informatique Fondamentale de Lille – LIFL , Centre de recherche sur l’Information Scientifique et Technique – CERIST},

   publisher={John Wiley & Sons},

   journal={Concurrency and Computation: Practice and Experience},

   audience={internationale },

   year={2012},

   pdf={http://hal.inria.fr/hal-00731859/PDF/cpedoc.pdf}

}

Download Download (PDF)   View View   Source Source   

879

views

In this paper, we address the design and implementation of GPU-accelerated Branch-and-Bound algorithms (B&B) for solving Flow-shop scheduling optimization problems (FSP). Such applications are CPU-time consuming and highly irregular. On the other hand, GPUs are massively multi-threaded accelerators using the SIMD model at execution. A major issue which arises when executing on GPU a B&B applied to FSP is thread or branch divergence. Such divergence is caused by the lower bound function of FSP which contains many irregular loops and conditional instructions. Our challenge is therefore to revisit the design and implementation of B&B applied to FSP dealing with thread divergence. Extensive experiments of the proposed approach have been carried out on well-known FSP benchmarks using an Nvidia Tesla C2050 GPU card. Compared to a CPU-based execution, accelerations up to x77.46 are achieved for large problem instances.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

149 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1238 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: