8535

An Adaptive Multiresolution Mesh Representation for CPU-GPU Coupled Computation

Andre Maximo, Luiz Velho, Marcelo Siqueira
Institute of Pure and Applied Mathematics, Brazil
Institute of Pure and Applied Mathematics, Preprint serie A 723/2012
@article{maximo2012adaptive,

   title={An Adaptive Multiresolution Mesh Representation for CPU-GPU Coupled Computation},

   author={Maximo, A. and Velho, L. and Siqueira, M.},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

884

views

In this paper, we present an adaptive multiresolution mesh representation exploring the computational differences of the CPU and the GPU. We build our representation considering a dense-polygon mesh simplified to a base mesh which stores the original geometry by means of an atlas structure. For both simplification and refinement processes, we present a hierarchical method based on stellar operators. During simplification, we compute local parametrizations to generate charts and an atlas structure to be used later in refinement. Unlike previous approaches, we employ the simplified mesh as our base domain in a novel atlas descriptor using a specialized halfedge data structure combined with our charts. Finally, we show that our mesh representation can be used to adaptively control the mesh resolution in CPU-GPU coupled applications, including mesh editing and visualization.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1475162360
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1475162360
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => mD7ZjK6sJqdrJ2O6jFxn3omu8io=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2004 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: