8602

Fast Parallel Sorting Algorithms on GPUs

Bilal Jan, Bartolomeo Montrucchio, Carlo Ragusa, Fiaz Gul Khan, Omar Khan
Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, I-10129 Italy
International Journal of Distributed and Parallel systems (IJDPS), Volume 3, Number 6, 2012
@article{jan2012fast,

   title={FAST PARALLEL SORTING ALGORITHMS ON GPUS},

   author={Jan, B. and Montrucchio, B. and Ragusa, C. and Khan, F.G. and Khan, O.},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

1440

views

This paper presents a comparative analysis of the three widely used parallel sorting algorithms: OddEven sort, Rank sort and Bitonic sort in terms of sorting rate, sorting time and speed-up on CPU and different GPU architectures. Alongside we have implemented novel parallel algorithm: min-max butterfly network, for finding minimum and maximum in large data sets. All algorithms have been implemented exploiting data parallelism model, for achieving high performance, as available on multi-core GPUs using the OpenCL specification. Our results depicts minimum speed-up19x of bitonic sort against oddeven sorting technique for small queue sizes on CPU and maximum of 2300x speed-up for very large queue sizes on Nvidia Quadro 6000 GPU architecture. Our implementation of full-butterfly network sorting results in relatively better performance than all of the three sorting techniques: bitonic, odd-even and rank sort. For min-max butterfly network, our findings report high speed-up of Nvidia quadro 6000 GPU for high data set size reaching 224 with much lower sorting time.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

129 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1190 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: