Exploring SIMD for Molecular Dynamics, Using Intel Xeon Processors and Intel Xeon Phi Coprocessors

S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, S. A. Jarvis
Department of Computer Science, University of Warwick, Coventry, UK
IEEE International Parallel & Distributed Processing Symposium, 2013

   title={Exploring SIMD for Molecular Dynamics, Using Intel Xeon Processors and Intel Xeon Phi Coprocessors},

   author={Pennycook, SJ and Hughes, CJ and Smelyanskiy, M and Jarvis, SA},



Download Download (PDF)   View View   Source Source   



We analyse gather-scatter performance bottlenecks in molecular dynamics codes and the challenges that they pose for obtaining benefits from SIMD execution. This analysis informs a number of novel code-level and algorithmic improvements to Sandia’s miniMD benchmark, which we demonstrate using three SIMD widths (128-, 256- and 512-bit). The applicability of these optimisations to wider SIMD is discussed, and we show that the conventional approach of exposing more parallelism through redundant computation is not necessarily best. In single precision, our optimised implementation is up to 5x faster than the original scalar code running on Intel Xeon processors with 256-bit SIMD, and adding a single Intel Xeon Phi coprocessor provides up to an additional 2x performance increase. These results demonstrate: (i) the importance of effective SIMD utilisation for molecular dynamics codes on current and future hardware; and (ii) the considerable performance increase afforded by the use of Intel Xeon Phi coprocessors for highly parallel workloads.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1496 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

255 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: