9059

GPGPU Test Suite Minimisation: Search Based Software Engineering Performance Improvement Using Graphics Cards

Shin Yoo, Mark Harman, Shmuel Ur
University College London
Journal of Empirical Software Engineering (EMSE), 2013
@article{yoo2013gpgpu,

   title={GPGPU Test Suite Minimisation: Search Based Software Engineering Performance Improvement Using Graphics Cards},

   author={Yoo, Shin and Harman, Mark and Ur, Shmuel},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

368

views

It has often been claimed that SBSE uses so-called "embarrassingly parallel" algorithms that will imbue SBSE applications with easy routes to dramatic performance improvements. However, despite recent advances in multicore computation, this claim remains largely theoretical; there are few reports of performance improvements using multicore SBSE. This paper shows how inexpensive General Purpose computing on Graphical Processing Units (GPGPU) can be used to massively parallelise suitably adapted SBSE algorithms, thereby making progress towards cheap, easy and useful SBSE parallelism. The paper presents results for three different algorithms: NSGA2, SPEA2, and the Two Archive Evolutionary Algorithm, all three of which are adapted for multi-objective regression test selection and minimization. The results show that all three algorithms achieved performance improvements up to 25 times, using widely available standard GPUs. We also found that the speed-up was observed to be statistically strongly correlated to the size of the problem instance; as the problem gets harder the performance improvements also get better.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

138 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1212 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: