A Bi-objective Optimization Framework for Query Plans

P. Przymus, K. Kaczmarski, K. Stencel
Nicolaus Copernicus University, Poland; Warsaw University of Technology, Poland; The University of Warsaw, Poland



Download Download (PDF)   View View   Source Source   



Graphics Processing Units (GPU) have significantly more applications than just rendering images. They are also used in general-purpose computing to solve problems that can benefit from massive parallel processing. However, there are tasks that either hardly suit GPU or fit GPU only partially. The latter class is the focus of this paper. We elaborate on hybrid CPU/GPU computation and build optimisation methods that seek the equilibrium between these two computation platforms. The method is based on heuristic search for bi-objective Pareto optimal execution plans in presence of multiple concurrent queries. The underlying model mimics the commodity market where devices are producers and queries are consumers. The value of resources of computing devices is controlled by supply-and-demand laws. Our model of the optimization criteria allows finding solutions of problems not yet addressed in heterogeneous query processing. Furthermore, it also offers lower time complexity and higher accuracy than other methods.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: