11750

Literature review: Build and Travel KD-Tree with CUDA

M. Zhou
School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6
BibTeX

Download Download (PDF)   View View   Source Source   

1760

views

Ray tracing is an important and widely used tool in computer graphic. Entertainment and game industry have already bene t a lot from ray tracing. However, designers and end-users are forced to use off-line ray tracing tools for a long time due to the high computation load. In ray tracing, most of the computation is concentrated on whether hundreds of millions of rays hit objects in a scene. The naive algorithm calculate intersection between every ray and every triangle in the scene, which yields O(nm) computation time with n rays and m triangles. Inspired by binary search in one dimension space, one of the most popular and efficient improvement is partition the scene and build a tree to represent it. With this tree we have algorithm with O(nlog(m)). Travelling kd-tree with n rays is a natural parallel problem with each ray independent to each other. Thus if we have a kd-tree for a scene, the intersection problem can be calculated with O(log(m)) on n processors, which is an optimal algorithm with nm=log(m) accelerator. In practice, the accelerator is much lower due to hardware limitation, which we will discuss later. In this case kd-tree(k-dimensional tree)is developed with many other spacial partition algorithms. Despite animation with dynamic scene, kd-tree has been proved to be the most efficient data structure for static scene[2][16]. There are two tasks for us to use kd-tree in ray tracing: 1.Build kd-tree with triangle soup; 2.Travel kd-tree to nd intersection points. This paper will rst review state-of-the-art algorithms to build and travel kd-tree, both serial and parallel. Then implement an algorithm to build kd-tree with CUDA. Finally analyse this algorithm and try to make it faster and more memory efficient.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org