14017

Optimizing Full Correlation Matrix Analysis of fMRI Data on Intel Xeon Phi Coprocessors

Yida Wang, Michael Anderson, Jonathan D. Cohen, Alexander Heinecke, Kai Li, Nadathur Satish, Narayanan Sundaram, Nicholas B. Turk-Browne, Ted Willke
Department of Computer Science, Princeton University
Princeton University Technical Report TR-983-15, 2015
BibTeX

Download Download (PDF)   View View   Source Source   

2243

views

Full correlation matrix analysis (FCMA) is an unbiased approach for exhaustively studying interactions among brain regions in functional magnetic resonance imaging (fMRI) data from human participants. In order to answer neuro-scientific questions efficiently, we are developing a closedloop analysis system with FCMA on a cluster of nodes with Intel Xeon Phi coprocessors. We have proposed several ideas to modify the algorithm to improve the performance on the coprocessor. Our experiments with real datasets show that the optimized single-node code runs 5x-16x faster than the baseline implementation using the well-known Intel MKL and LibSVM libraries, and that the cluster implementation achieves near linear speedup on 5760 cores.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org