16587

Programming Models and Tools for Many-Core Platforms

Alessandro Capotondi
Universita di Bologna
Universita di Bologna, 2016

@phdthesis{capotondi2016programming,

   title={Programming models and tools for many-core platforms},

   author={Capotondi, Alessandro},

   year={2016},

   school={alma}

}

Download Download (PDF)   View View   Source Source   

1565

views

The negotiation between power consumption, performance, programmability, and portability drives all computing industry designs, in particular the mobile and embedded systems domains. Two design paradigms have proven particularly promising in this context: architectural heterogeneity and many-core processors. Parallel programming models are key to effectively harness the computational power of heterogeneous many-core SoC. This thesis presents a set of techniques and HW/SW extensions that enable performance improvements and that simplify programmability for heterogeneous many-core platforms. The thesis contributions cover vertically the entire software stack for many-core platforms, from hardware abstraction layers running on top of bare-metal, to programming models; from hardware extensions for efficient parallelism support to middleware that enables optimized resource management within many-core platforms. First, we present mechanisms to decrease parallelism overheads on parallel programming runtimes for many-core platforms, targeting fine-grain parallelism. Second, we present programming model support that enables the offload of computational kernels within heterogeneous many-core systems. Third, we present a novel approach to dynamically sharing and managing many-core platforms when multiple applications coded with different programming models execute concurrently. All these contributions were validated using STMicroelectronics STHORM, a real embodiment of a state-of-the-art many-core system. Hardware extensions and architectural explorations were explored using VirtualSoC, a SystemC based cycle-accurate simulator of many-core platforms.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: