A Survey of FPGA Based Neural Network Accelerator
Tsinghua University, China
arXiv:1712.08934 [cs.AR], (24 Dec 2017)
@article{guo2017survey,
title={A Survey of FPGA Based Neural Network Accelerator},
author={Guo, Kaiyuan and Zeng, Shulin and Yu, Jincheng and Wang, Yu and Yang, Huazhong},
year={2017},
month={dec},
archivePrefix={"arXiv"},
primaryClass={cs.AR}
}
Recent researches on neural network have shown great advantage in computer vision over traditional algorithms based on handcrafted features and models. Neural network is now widely adopted in regions like image, speech and video recognition. But the great computation and storage complexity of neural network based algorithms poses great difficulty on its application. CPU platforms are hard to offer enough computation capacity. GPU platforms are the first choice for neural network process because of its high computation capacity and easy to use development frameworks. On the other hand, FPGA based neural network accelerator is becoming a research topic. Because specific designed hardware is the next possible solution to surpass GPU in speed and energy efficiency. Various FPGA based accelerator designs have been proposed with software and hardware optimization techniques to achieve high speed and energy efficiency. In this paper, we give an overview of previous work on neural network accelerators based on FPGA and summarize the main techniques used. Investigation from software to hardware, from circuit level to system level is carried out to complete analysis of FPGA based neural network accelerator design and serves as a guide to future work.
December 28, 2017 by hgpu