18935

Performance Modelling of Deep Learning on Intel Many Integrated Core Architectures

Andre Viebke, Sabri Pllana, Suejb Memeti, Joanna Kolodziej
Linnaeus University, Vaxjo, Sweden
arXiv:1906.01992 [cs.DC], (4 Jun 2019)

@misc{viebke2019performance,

   title={Performance Modelling of Deep Learning on Intel Many Integrated Core Architectures},

   author={Andre Viebke and Sabri Pllana and Suejb Memeti and Joanna Kolodziej},

   year={2019},

   eprint={1906.01992},

   archivePrefix={arXiv},

   primaryClass={cs.DC}

}

Download Download (PDF)   View View   Source Source   

264

views

Many complex problems, such as natural language processing or visual object detection, are solved using deep learning. However, efficient training of complex deep convolutional neural networks for large data sets is computationally demanding and requires parallel computing resources. In this paper, we present two parameterized performance models for estimation of execution time of training convolutional neural networks on the Intel many integrated core architecture. While for the first performance model we minimally use measurement techniques for parameter value estimation, in the second model we estimate more parameters based on measurements. We evaluate the prediction accuracy of performance models in the context of training three different convolutional neural network architectures on the Intel Xeon Phi. The achieved average performance prediction accuracy is about 15% for the first model and 11% for second model.
Rating: 4.0/5. From 2 votes.
Please wait...

* * *

* * *

HGPU group © 2010-2019 hgpu.org

All rights belong to the respective authors

Contact us: