Partitioning streaming parallelism for multi-cores: a machine learning based approach

Zheng Wang, Michael F. P. O’Boyle
University of Edinburgh, Edinburgh, United Kingdom
In Proceedings of the 19th international conference on Parallel architectures and compilation techniques (2010), PACT ’10, pp. 307-318


   title={Partitioning streaming parallelism for multi-cores: a machine learning based approach},

   author={Wang, Z. and O’Boyle, M.F.P.},

   booktitle={Proceedings of the 19th international conference on Parallel architectures and compilation techniques},





Source Source   



Stream based languages are a popular approach to expressing parallelism in modern applications. The efficient mapping of streaming parallelism to multi-core processors is, however, highly dependent on the program and underlying architecture. We address this by developing a portable and automatic compiler-based approach to partitioning streaming programs using machine learning. Our technique predicts the ideal partition structure for a given streaming application using prior knowledge learned off-line. Using the predictor we rapidly search the program space (without executing any code) to generate and select a good partition. We applied this technique to standard StreamIt applications and compared against existing approaches. On a 4-core platform, our approach achieves 60% of the best performance found by iteratively compiling and executing over 3000 different partitions per program. We obtain, on average, a 1.90x speedup over the already tuned partitioning scheme of the StreamIt compiler. When compared against a state-of-the-art analytical, model-based approach, we achieve, on average, a 1.77x performance improvement. By porting our approach to a 8-core platform, we are able to obtain 1.8x improvement over the StreamIt default scheme, demonstrating the portability of our approach.
Rating: 2.5/5. From 1 vote.
Please wait...

* * *

* * *

Featured events

Hida Takayama, Japan

The Third International Workshop on GPU Computing and AI (GCA), 2018

Nagoya University, Japan

The 5th International Conference on Power and Energy Systems Engineering (CPESE), 2018

MediaCityUK, Salford Quays, Greater Manchester, England

The 10th International Conference on Information Management and Engineering (ICIME), 2018

No. 1037, Luoyu Road, Hongshan District, Wuhan, China

The 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018

Nanyang Executive Centre in Nanyang Technological University, Singapore

The 2018 International Conference on Cloud Computing and Internet of Things (CCIOT’18), 2018

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: